На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
17.21 Конденсаторы электроемкостями C1=0,2 мкФ, C2=0,6 мкФ, C3=0,3 мкФ, C4=0,5 мкФ соединены так, как это указано на рис. 17.2. Разность потенциалов U между точками А и В равна 320 B. Определить разность потенциалов Ui и заряд Qi на пластинах каждого конденсатора (i=1, 2, 3, 4).
17.22 Конденсаторы электроемкостями C1=10 нФ, С2=40 нФ, C3=2 нФ и C4=30 нФ соединены так, как это показано на рис. 17.3. Определить электроемкость C соединения конденсаторов
17.23 Конденсаторы электроемкостями C1=2 мкФ, C2=2 мкФ, С3=3 мкФ, C4=1 мкФ соединены так, как указано на рис. 17.4. Разность потенциалов на обкладках четвертого конденсатора U4=100 B. Найти заряды и разности потенциалов на обкладках каждого конденсатора, а также общий заряд и разность потенциалов батареи конденсаторов.
17.24 Определить электроемкость схемы, представленной на рис. 17.5, где C1=1 пФ, C2=2 пФ, C3=2 пФ, C4=4 пФ, C5=3 пФ.
17.25 Пять различных конденсаторов соединены согласно схеме, приведенной на рис. 17.6. Определить электроемкость C4, при которой электроемкость всего соединения не зависит от величины электроемкости C5. Принять C1=8 пФ, C2=12 пФ, C3=6 пФ.
16 пример 1. Диполь с электрическим моментом p=2 нКл*м находится в однородном электрическом поле напряженностью E=30 кВ/м. Вектор p составляет угол α0=60° с направлением силовых линий поля. Определить произведенную внешними силами работу A поворота диполя на угол β=30°.
16 пример 2. Три точечных заряда Q1, Q2 и Q3 образуют электрически нейтральную систему, причем Q1=Q2=10 нКл. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Emax и потенциала φmax поля, создаваемого этой системой зарядов, на расстоянии r=1 м от центра треугольника, длина a стороны которого равна 10 см.
16 пример 3. В атоме йода, находящемся на расстоянии r=1 нм от α-частицы, индуцирован электрический момент p=1,5*10^-32 Кл*м. Определить поляризуемость α атома йода.
16 пример 4. Криптон находится под давлением p=10 МПа при температуре T=200 К. Определить: 1) диэлектрическую проницаемость ε криптона; 2) его поляризованность P, если напряженность E0 внешнего электрического поля равна 1 МВ/м. Поляризуемость α криптона равна 4,5*10^-29 м3.
16 пример 5. Жидкий бензол имеет плотность ρ=899 кг/м^3 и показатель преломления n=1,50. Определить: 1) электронную поляризуемость αe молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.
16.1 Вычислить электрический момент p диполя, если его заряд Q=10 нКл, плечо l=0,5 см.
16.2. Расстояние ℓ между зарядами Q=±3,2 нКл диполя равно 12 см. Найти напряженность E и потенциал φ поля, созданного диполем в точке, удаленной на r=8 см как от первого, так и от второго заряда.
16.3 Диполь с электрическим моментом p=0,12 нКл*м образован двумя точечными зарядами Q=±1 нКл. Найти напряженность E и потенциал φ электрического поля в точках A и B (рис. 16.6), находящихся на расстоянии r=8 см от центра диполя
16.4. Определить напряженность E и потенциал φ поля, созданного диполем в точках А и B (рис. 16.6). Его электрический момент p=1 пКл*м, а расстояние r от точек А и B до центра диполя равно 10 см.
16.5. Определить напряженность E и потенциал φ поля, создаваемого диполем с электрическим моментом p=4 пКл*м на расстоянии r=10 см от центра диполя, в направлении, составляющем угол α=60° с вектором электрического момента
16.6 Диполь с электрическим моментом p=1 пКл*м равномерно вращается с частотой n=10^3 с-1 относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Вывести закон изменения потенциала как функцию времени в некоторой точке, отстоящей от центра диполя на r=1 см и лежащей в плоскости вращения диполя. Принять, что в начальный момент времени потенциал φ0 интересующей нас точки равен нулю. Построить график зависимости φ(t).
16.7 Диполь с электрическим моментом p=1 пКл*м равномерно вращается с угловой скоростью ω=104 рад/с относительно оси, перпендикулярной плечу диполя и проходящей через его центр. Определить среднюю потенциальную энергию <П> заряда Q=1 нКл, находящегося на расстоянии r=2 см от центра диполя и лежащего в плоскости вращения, за время, равное: 1) полупериоду (от t1=0 до t2=T/2); 2) в течение времени t>>T. В начальный момент считать П=0.
16.8 Два диполя с электрическими моментами p1=1 пКл*м и p2=4 пКл*м находятся на расстоянии r=2 см друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой.
16.9 Два диполя с электрическими моментами p1=20 пКл*м и p2=50 пКл*м находятся на расстоянии r=10 см друг от друга, так что их оси лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию
16.10 Диполь с электрическим моментом p=100 пКл*м прикреплен к упругой нити (рис. 16.7). Когда в пространстве, где находится диполь, было создано электрическое поле напряженностью E=3 кВ/м перпендикулярно плечу диполя и нити, диполь повернулся на угол α=30°. Определить постоянную кручения*C нити.*Постоянной кручения называют величину, равную моменту силы, который вызывает закручивание нити на 1 рад.
16.11 В условиях предыдущей задачи диполь под действием поля поворачивается на малый угол. Определить постоянную кручения C нити.
16.12 Диполь с электрическим моментом p=20 нКл*м находится в однородном электрическом поле напряженностью E=50 кВ/м. Вектор электрического момента составляет угол α=60° с линиями поля. Какова потенциальная энергия П диполя? Указание. За нулевую потенциальную энергию принять энергию, соответствующую такому расположению диполя, когда вектор электрического момента диполя перпендикулярен линиям поля.
16.13 Диполь с электрическим моментом p=100 пКл*м свободно устанавливается в однородном электрическом поле напряженностью E=150 кВ/м. Вычислить работу A, необходимую для того, чтобы повернуть диполь на угол α=180°.
16.14. Диполь с электрическим моментом p=100 пКл*м свободно установился в однородном электрическом поле напряженностью H=10 кВ/м. Определить изменение потенциальной энергии ΔП диполя при повороте его на угол α=60°.
16.15 Перпендикулярно плечу диполя с электрическим моментом p=12 пКл*м возбуждено однородное электрическое поле напряженностью E=300 кВ/м. Под действием сил поля диполь начинает поворачиваться относительно оси, проходящей через его центр. Найти угловую скорость ω диполя в момент прохождения им положения равновесия. Момент инерции J диполя относительно оси, перпендикулярной плечу и проходящей через его центр, равен 2*10^-9 кг*м2.
online-tusa.com
|
SHOP