На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по физике с решениями
Страницы:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Число записей в разделе: 6529
2.160 Имеется кольцо радиусом R=20 см из медной проволоки. Найти силу F, с которой это кольцо притягивает материальную точку массой m=2 г, находящуюся на оси кольца на расстоянии L=0, 5, 10, 15, 20 и 50 см от его центра. Составить таблицу значений F и представить графически зависимость F=f(L). На каком расстоянии Lmax от центра кольца сила имеет максимальное значение Fmax и каково это значение? Радиус проволоки r=1 мм.
2.161 Сила взаимодействия между кольцом и материальной точкой, находящейся на оси кольца, имеет максимальное значение Fmax, когда точка находится на расстоянии Lmax от центра кольца. Во сколько раз сила взаимодействия F между кольцом и материальной точкой, находящейся на расстоянии L=0,5Lmax от центра кольца, меньше максимальной силы Fmax?
3.1 Найти момент инерции J и момент импульса L земного шара относительно оси вращения.
3.2 Два шара одинакового радиуса R=5 см закреплены на концах невесомого стержня. Расстояние между шарами r=0,5 м. Масса каждого шара m=1 кг. Найти: а) момент инерции J1 системы относительно оси, проходящей через середину стержня перпендикулярно к нему; б) момент инерции J2 системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; в) относительную ошибку δ=(J1-J2)/J2, которую мы допускаем при вычислении момента инерции системы, заменяя величину J1 величиной J2.
3.3 К ободу однородного диска радиусом R=0,2 м приложена касательная сила F=98,1 Н. При вращении на диск действует момент сил трения Мтр=98,1 Н*м. Найти массу m дисков, если известно, что диск вращается с угловым ускорением e=100 рад/с^2.
3.4 Однородный стержень длиной l=1 м и массой m=0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением e вращается стержень, если на него действует момент сил M=98,1 мН*м?
3.5 Однородный диск радиусом R=0,2 м и массой m=0,5 кг вращается вокруг оси, проходящей через его центр перпендикулярно к его плоскости. Зависимость угловой скорости ω вращения диска от времени t дается уравнением ω=А + Bt, где В=8 рад/с^2. Найти касательную силу F, приложенную к ободу диска. Трением пренебречь.
3.6 Маховик, момент инерции которого J=63,6 кг*м^2 вращается с угловой скоростью ω=31,4 рад/с. Найти момент сил торможения М, под действием которого маховик останавливается через время t=20 c. Маховик считать однородным диском.
3.7 К ободу колеса радиусом 0,5 м и массой m=50 кг приложена касательная сила F=98,1 H. Найти угловое ускорение e колеса. Через какое время t после начала действия силы колесо будет иметь частоту вращения n=100 об/с? Колесо считать однородным диском. Трением пренебречь.
3.8 Маховик радиусом R=0,2 м и массой m=10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения, T=14,7 Н. Какую частоту вращения n будет иметь маховик через время t=10 с после начала движения? Маховик считать однородным диском. Трением пренебречь.
3.9 Маховое колесо, момент инерции которого J=245 кг*м^2, вращается с частотой n=20 об/с. Через время t=1 мин после того, как на колесо перестал действовать момент сил M, оно остановилось. Найти момент сил трения Mтр и число оборотов N, которое сделало колесо до полной остановки после прекращения действия сил. Колесо считать однородным диском.
3.10 Две гири с массами m1=2 кг и m2=1 кг соединены нитью, перекинутой через блок массой m=1 кг. Найти ускорение a, с которым движутся гири, и силы натяжения Т1 и Т2 нитей, к которым подвешены гири. Блок считать однородным диском. Трением пренебречь.
3.11 На барабан массой m0=9 кг намотан шнур, к концу которого привязан груз массой m=2 кг. Найти ускорение а груза. Барабан считать однородным цилиндром. Трением пренебречь.
3.12 На барабан радиусом R=0,5 м намотан шнур, к концу которого привязан груз массой m=10 кг. Найти момент инерции J барабана, если известно, что груз опускается с ускорением a=2,04 м/с^2.
3.13 На барабан радиусом R=20 см, момент инерции которого J=0,1 кг*м^2, намотан шнур, к концу которого привязан груз массой m=0,5 кг. До начала вращения барабана высота груза над полом h0=1 м. Через какое время t груз опустится до пола? Найти кинетическую энергию Wk груза в момент удара о пол и силу натяжения нити T. Трением пренебречь.
3.14 Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого J=50 кг*м^2 и радиус R=20 см. Момент сил трения вращающегося блока Mтр=98,1 Н*м. Найти разность сил натяжения нити T1-T2 по обе стороны блока, если известно, что блок вращается с угловым ускорением e=2,36 рад/с2. Блок считать однородным диском.
3.15 Блок массой m=1 кг укреплен на конце стола (см. рис. и задачу 2.31). Гири 1 и 2 одинаковой массы m1=m2=1 кг соединены нитью, перекинутой через блок. Коэффициент трения гири 2 о стол k=0,1. Найти ускорение a, с которым движутся гири, и силы натяжения Т1 и Т2 нитей. Блок считать однородным диском. Трением в блоке пренебречь.
3.16 Диск массой m=2 кг катится без скольжения по горизонтальный плоскости со скоростью v=4 м/с. Найти кинетическую энергию Wк диска.
3.17 Шар диаметром D=6 см и массой m=0,25 кг катится без скольжения по горизонтальной плоскости с частотой вращения n=4 об/с. Найти кинетическую энергию Wк шара.
3.18 Обруч и диск одинаковой массы m1=m2 катятся без скольжения с одной и той же скоростью v. Кинетическая энергия обруча Wк1=4 кгс*м. Найти кинетическую энергию Wк2 диска.
3.19 Шар массой m=1 кг катится без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку v=10 см/с, после удара u=8 см/с. Найти количество теплоты Q, выделившееся при ударе шара о стенку.
3.20 Найти относительную ошибку δ, которая получится при вычислении кинетической энергии Wк катящегося шара, если не учитывать вращения шара.
3.21 Диск диаметром D=60 см и массой m=1 кг вращается вокруг оси, проходящей через центр перпендикулярно к его плоскости с частотой n=20 ^об/с. Какую работу А надо совершить, чтобы остановить диск?
3.22 Кинетическая энергия вала, вращающегося с частотой n=5 ^об/с, Wк=60 Дж. Найти момент импульса L вала.
3.23 Найти кинетическую Wк энергию велосипедиста, едущего со скоростью v=9 км/ч. Масса велосипедиста вместе с велосипедом m=78 кг, причем на колеса приходится масса m0=3 кг. Колеса велосипеда считать обручами.
online-tusa.com
|
SHOP