На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Задачи на тему Равновесие произвольной системы сил


8.1 На круглой наклонной площадке, ось которой ACD наклонена к вертикали под углом 20°, укреплено в точке B тело веса 400 Н. Определить момент относительно оси AD, создаваемый силой тяжести тела, если радиус CB=3 м горизонтален.

8.2 Ветряной двигатель имеет четыре крыла, наклоненных под углом α=15°=arcsin 0,259 к плоскости, перпендикулярной оси вращения; равнодействующая сил давления ветра на каждое крыло равна 1 кН, направлена по перпендикуляру к плоскости крыла и приложена в точке, отстоящей на 3 м от оси вращения. Найти вращающий момент.

8.3 Электродвигатель, помещенный на оси O колесного ската трамвайного вагона, стремится повернуть ось против часовой стрелки, причем величина момента вращающей пары сил (P,P) равна 6 кН*м, а радиус колес 60 см. Определить силу тяги Q колесного ската, предполагая, что он стоит на горизонтальных рельсах. Трением качения пренебречь.

8.4 К окружностям трех дисков: A радиуса 15 см, B радиуса 10 см и C радиуса 5 см приложены пары сил; величины сил, составляющих пары, соответственно равны P1=10 Н, P2=20 Н и P. Оси OA, OB и OC лежат в одной плоскости; угол AOB прямой. Определить величину силы P и угол BOC=α так, чтобы система трех дисков, будучи совершенно свободной, оставалась в равновесии.

8.5 Подъемный кран установлен на трехколесной тележке ABC. Известны размеры крана: AD=DB=1 м, CD=1,5 м, CM=1 м, KL=4 м. Кран уравновешивается противовесом F. Вес крана с противовесом равен P=100 кН и приложен в точке G, лежащей в плоскости LMNF на расстоянии GH=0,5 м от оси крана MN; поднимаемый груз Q весит 30 кН. Найти давление колес на рельсы для такого положения крана, когда плоскость его LMN параллельна AB.

8.6 Временный подъемный кран состоит из пирамиды с горизонтальным основанием в виде равностороннего треугольника ABC и с вертикальной гранью в виде равнобедренного треугольника ADB; в точках O и D шарнирно закреплена вертикальная ось крана, вокруг которой может вращаться стрела OE, несущая груз P. Основание ABC прикреплено к фундаменту подшипниками A и B и вертикальным болтом C. Определить реакции опор при расположении стрелы в плоскости симметрии крана, если вес груза P=12 кН, вес крана Q=6 кН, причем расстояние его центра тяжести S от оси OD равно h=1 м, a=4 м, b=4 м.

8.7 Крышка светового машинного люка удерживается в горизонтальном положении стойкой FG, упирающейся в крышку в точке F на расстоянии EF=1,5 м от оси крышки. Вес крышки P=180 Н; длина ее CD=2,3 м; ширина CE=0,75 м, а расстояния шарниров A и B от краев крышки AE=BC=0,15 м. Найти реакции шарниров A и B и усилие S в стойке FG.

8.8 Однородная прямоугольная пластинка ABCD, опираясь на три точечные опоры, две из которых расположены в вершинах прямоугольника A и B, а третья-в некоторой точке E, удерживается в горизонтальном положении. Вес пластинки равен P. Давление на опоры в точках A и B соответственно равны P/4 и P/5. Найти давление NE на опору в точке E и координаты этой точки, если длины сторон пластинки равны a и b.

8.9 Стол стоит на трех ножках, концы которых A, B и C образуют равносторонний треугольник со стороной a. Вес стола равен P, причем центр тяжести его расположен на вертикали zOO1, проходящей через центр O1 треугольника ABC. На столе помещен груз p в точке M, координаты которой x и y; ось Oy параллельна AB. Определить давление каждой ножки на пол.

8.10 Круглый стол стоит на трех ножках A1, A2 и A3; в центре O помещен груз. Какому условию должны удовлетворять центральные углы φ1, φ2 и φ3 для того, чтобы давления на ножки A1, A2 и A3 относились, как 1:2:√3? При решении задачи берутся моменты сил относительно двух из радиусов OA1, OA2 и OA3.

8.11 Круглая пластинка, весом которой пренебрегаем, покоится в горизонтальном положении, опираясь центром на острие O. Не нарушая равновесия, по окружности пластинки разместили грузы: P1 веса 1,5 Н, P2 веса 1 Н и P3 веса 2 Н. Определить углы α и β.

8.12 Ременный шкив CD динамо-машины имеет радиус 10 см; размеры вала AB указаны на рисунке. Натяжение верхней ведущей ветви ремня T1=100 Н, нижней ведомой T2=50 Н. Определить вращающий момент M и реакции подшипников A и B при равновесии системы, пренебрегая весом частей машины; (P,P)-пара, образуемая силами сопротивления.

8.13 На горизонтальный вал, лежащий в подшипниках A и B, действуют: с одной стороны вес тела Q=250 Н, привязанного к шкиву C радиуса 20 см посредством троса, а с другой стороны вес тела P=1 кН, надетого на стержень DE, неизменно скрепленный с валом AB под прямым углом. Даны расстояния: AC=20 см, CD=70 см, BD=10 см. В положении равновесия стержень DE отклонен от вертикали на угол 30°. Определить расстояние l центра тяжести тела P от оси вала AB и реакции подшипников A и B.

8.14 На горизонтальный вал AB насажены зубчатое колесо C радиуса 1 м и шестерня D радиуса 10 см. Другие размеры указаны на рисунке. К колесу C по направлению касательной приложена горизонтальная сила P=100 Н, а к шестерне D, также по касательной, приложена вертикальная сила Q. Определить силу Q и реакции подшипников A и B в положении равновесия.

8.15 Рабочий удерживает груз Q=800 Н с помощью ворота, схематически изображенного на рисунке; радиус барабана R=5 см; длина рукоятки AK=40 см, AC=CB=50 см. Определить давление P на рукоятку и давления оси ворота на опоры A и B при том положении ворота, когда рукоятка AK горизонтальна; сила P вертикальна.

8.16 С помощью ворота, схематически изображенного на рисунке, удерживается груз Q=1 кН. Радиус барабана R=5 см. Длина рукоятки KD=40 см; AD=30 см; AC=40 см; CB=60 см. Веревка сходит с барабана по касательной, наклоненной к горизонту под углом 60°. Определить давление P на рукоятку и реакции опор A и B при том положении ворота, когда рукоятка KD горизонтальна.

8.17 На вал AB ворота намотана веревка, поддерживающая груз Q. Радиус колеса C, насаженного на вал, в шесть раз больше радиуса вала; другие размеры указаны на рисунке. Веревка, намотанная на окружность колеса и натягиваемая грузом P весом 60 Н, сходит с колеса по касательной, наклоненной к горизонту под углом α=30°. Определить вес груза Q, при котором ворот остается в равновесии, а также реакции подшипников A и B, пренебрегая весом вала и трением на блоке D.

8.18 Прямоугольная однородная полка ABCD веса G удерживается в горизонтальном положении тросом EH, составляющим с плоскостью полки угол α. Определить натяжение T троса (весом его пренебречь) и реакции петель A и B, если AK=KB=DE=EC и HK перпендикулярно AB.

8.19 Однородная прямоугольная крышка веса P=400 Н удерживается приоткрытой на 60° над горизонтом противовесом Q. Определить, пренебрегая трением на блоке D, вес Q и реакции шарниров A и B, если блок D укреплен на одной вертикали с A и AD=AC.

8.20 Однородная прямоугольная крышка ABCD ящика может вращаться вокруг горизонтальной оси AB на петлях в точках A и B. Горизонтальная веревка CE, параллельная Ax, удерживает крышку под углом DAx=30°. Определить реакции в петлях, если вес крышки 20 Н.

8.21 Крышка прямоугольного ящика ABCD подперта с одной стороны палочкой DE. Вес крышки 120 Н; AD=AE; угол DAE=60°. Определить реакции шарниров A и B, а также усилие S в палочке, пренебрегая ее весом.

8.22 Фрамуга ABDC веса Q=100 Н открыта на угол α=60°. Дано BD=BH; CE=ED; веревка EF параллельна прямой DH. Определить усилие P, необходимое для удержания фрамуги в равновесии, и реакции петель A и B.

8.23 Разводная часть ABCD моста веса 15 кН поднята цепью CE, перекинутой через блок E на лебедку K. Точка E находится в вертикальной плоскости CBy. Определить для изображенного на рисунке положения натяжение цепи CE и реакции в точках A и B. Центр тяжести разводной части совпадает с центром прямоугольника ABCD.

8.24 Однородная прямоугольная рама веса 200 Н прикреплена к стене при помощи шарового шарнира A и петли B и удерживается в горизонтальном положении веревкой CE, привязанной в точке C рамы и к гвоздю E, вбитому в стену на одной вертикали с A, причем ∠ECA=∠BAC=30°. Определить натяжение веревки и опорные реакции.

8.25 Полка ABCD вагона, которая может вращаться вокруг оси AB, удерживается в горизонтальном положении стержнем ED, прикрепленным при помощи шарнира E к вертикальной стене BAE. Вес полки и лежащего на ней груза P равен 800 Н и приложен в точке пересечения диагоналей прямоугольника ABCD. Даны размеры: AB=150 см, AD=60 см, AK=BH=25 см. Длина стержня ED=75 см. Определить усилие S в стержне ED, пренебрегая его весом, и реакции петель K и H.

8.26 Квадратная однородная пластинка ABCD со стороной a=30 см и веса P=5 Н закреплена в точке A при помощи шарового шарнира, а в точке B при помощи цилиндрического шарнира. Сторона AB горизонтальна. В точке E пластинка опирается на острие. В точке H на пластинку действует сила F параллельно стороне AB. Найти реакции в точках A, B и E, если CE=ED, BH=10 см, F=10 Н и пластинка образует с горизонтальной плоскостью угол α=30°.

8.27 Однородная горизонтальная плита веса P, имеющая форму прямоугольного параллелепипеда, прикреплена неподвижно к земле шестью прямолинейными стержнями. Определить усилия в опорных стержнях, обусловленные весом плиты, если концы стержней прикреплены к плите и неподвижным устоям шаровыми шарнирами.

8.28 Определить усилия в шести опорных стержнях, поддерживающих квадратную плиту ABCD, при действии горизонтальной силы P вдоль стороны AD. Размеры указаны на рисунке.

8.29 Прямоугольная дверь, имеющая вертикальную ось вращения AB, открыта на угол CAD=60° и удерживается в этом положении двумя веревками, из которых одна, CD, перекинута через блок и натягивается грузом P=320 Н, другая, EF, привязана к точке F пола. Вес двери 640 Н; ее ширина AC=AD=1,8 м; высота AB=2,4 м. Пренебрегая трением на блоке, определить натяжение T веревки EF, а также реакции цилиндрического шарнира в точке A и подпятника в точке B.

8.30 Стержень AB удерживается в наклонном положении двумя горизонтальными веревками AD и BC. При этом в точке A стержень опирается на вертикальную стену, на которой находится точка D, а в точке B-на горизонтальный пол. Точки A и C лежат на одной вертикали. Вес стержня 8 Н. Трением в точках A и B пренебрегаем. Проверить, может ли стержень оставаться в равновесии, и определить натяжения TA и TB веревок и реакции опорных плоскостей, если ∠ABC=∠BCE=60°.

8.31 Пара сил, вращающая водяную турбину T и имеющая момент 1,2 кН*м, уравновешивается давлением на зубец B конического зубчатого колеса OB и реакциями опор. Давление на зубец перпендикулярно к радиусу OB=0,6 м и составляет с горизонтом угол α=15°=arctg 0,268. Определить реакции подпятника C и подшипника A, если вес турбины с валом и колесом равен 12 кН и направлен вдоль оси OC, а расстояния AC=3 м, AO=1 м.

8.32 Ветряной двигатель с горизонтальной осью AC имеет четыре симметрично расположенных крыла, плоскости которых составляют с вертикальной плоскостью, перпендикулярной оси AC, равные углы 30°. На расстоянии 2 м от оси к каждому крылу приложена нормально к его плоскости равнодействующая сил давления ветра, равная 1,2 кН (крыло D в проекции на плоскость xy изображено отдельно). Ось двигателя опирается в точке A на подшипник, в точке C-на подпятник и удерживается в покое вертикальным давлением P на зубец колеса B, производимым не показанной на рисунке шестерней. Радиус колеса B равен 1,2 м; расстояния: BC=0,5 м, AB=1 м, AF=0,5 м. Определить давление P и реакции опор.

8.33 Груз Q равномерно поднимается мотором M посредством бесконечной цепи. Определить реакции опор A и B и натяжения в цепи, если ветви цепи наклонены к горизонту под углами 30° (ось O1x1 параллельна оси Ax). Известно, что r=10 см, R=20 см, Q=10 кН, натяжение ведущей части цепи вдвое больше натяжения ведомой части, т.е. T1=2T2.

8.34 Для подъема копровой бабы веса P=3 кН служит вертикальный ворот, вал которого радиуса r=20 см опирается нижним концом на подпятник A, а верхним концом удерживается в подшипнике B. Вал приводится во вращение мотором. Найти необходимый для равномерного подъема копровой бабы вращающий момент мотора, а также реакции в подпятнике A и подшипнике B. При этом дано: h1=1 м, h=30 см и вес вращающихся частей ворота P1=1 кН.

8.35 Ворот, служащий для подъема породы из наклонного шурфа, состоит из вала радиуса 0,25 м и длины 1,5 м. Вал приводится во вращение при помощи мотора (на рисунке не показан). Определить реакции опор и вращающий момент Mвр мотора, если вес вала равен 0,8 кН, вес груза 4 кН, коэффициент трения между грузом и поверхностью шурфа равен 0,5, угол наклона шурфа к горизонту равен 30° и место схода троса с вала находится на расстоянии 50 см от подшипника B. Вращение вала считать равномерным.

8.36 Горизонтальный вал трансмиссии, несущий два шкива C и D ременной передачи, может вращаться в подшипниках A и B. Радиусы шкивов: rC=20 см, rD=25 см; расстояния шкивов от подшипников: a=b=50 см; расстояние между шкивами c=100 см. Натяжения ветвей ремня, надетого на шкив C, горизонтальны и имеют величины T1 и t1, причем T1=2t1=5 кН, натяжения ветвей ремня, надетого на шкив D, образуют с вертикалью угол α=30° и имеют величины T2 и t2, причем T2=2t2. Определить натяжения T2 и t2 в условиях равновесия и реакции подшипников, вызванные натяжениями ремней.

8.37 Давление шатуна двигателя, сосредоточенное в середине D шейки коленчатого вала, равно P=20 кН и направлено под углом 10° к горизонту, причем плоскость ODO1, проходящая через оси вала OO1 и шейки D, образует с вертикалью угол 30°. От маховика усилие передается на завод канатом, ветви которого параллельны и наклонены к горизонту под углом 30°. Действие силы P уравновешивается натяжениями T и t ветвей каната и реакциями подшипников A и B. Вес маховика 13 кН, диаметр его d=2 м, сумма натяжений ветвей каната T+t=7,5 кН, а указанные на рисунке расстояния равны: точки D от оси OO1 r=125 мм, l=250 мм, m=300 мм, n=450 мм. Определить реакции подшипников A и B и натяжения t и T.

8.38 Для передачи вращения с одного вала на другой, ему параллельный, установлены два одинаковых вспомогательных шкива, заклиненных на горизонтальной оси KL. Ось может вращаться в подшипнике M, укрепленном на колонке MN. Треугольное основание этой колонки притянуто к полу двумя болтами A и B и свободно опирается точкой C. Болт A проходит через круглое отверстие в основании, болт же B-через продолговатое отверстие, имеющее направление линии AB. Ось колонки проходит через центр треугольника ABC. Определить реакции в точках A, B и C, если расстояние оси KL от пола равно 1 м, расстояния середин шкивов от оси колонки равны 0,5 м и натяжения всех четырех ветвей ремней принимаются одинаковыми и равными 600 Н. Ветви правого ремня горизонтальны, а ветви левого наклонены к горизонту под углом 30°. Вес всей установки равен 3 кН и приложен к точке, лежащей на оси колонки; даны размеры: AB=BC=CA=50 см.

8.39 Подвеска подшипника ременного шкива D прикреплена к гладкому горизонтальному потолку MN в точках A и C и упирается в него точкой B. Эти точки лежат в вершинах равностороннего треугольника ABC со стороной 30 см. Положение центра ременного шкива D определяется вертикалью EF=40 см, опущенной из центра E треугольника ABC, и горизонталью FD=50 см, параллельной стороне AC. Плоскость шкива перпендикулярна прямой FD. Натяжение P каждой ветви ремня равно 1200 Н и наклонено к вертикали под углом 30°. Определить реакции в опорах A, B и C, пренебрегая весом частей.

8.40 Картина в раме, имеющей форму прямоугольника ABCD, подвешена на вертикальной стене при помощи шнура EKF, надетого на крюк K так, что край AB горизонтален; точки E, F-середины сторон AD и BC. Картина наклонена к стене под углом α=arctg(3/4) и опирается на два гвоздя L и M, вбитых в стену, причем AL=MB. Размеры картины: AB=60 см, AD=75 см; вес картины 200 Н и приложен в центре прямоугольника ABCD; длина шнура 85 см. Определить натяжение T шнура и давления на гвозди L и M.

8.41 Бифиляр состоит из однородного стержня AA1, подвешенного на двух нерастяжимых нитях длины l, которые укреплены в точках B и B1. Длина стержня AA1=BB1=2r, а вес P. Стержень повернут вокруг вертикальной оси на угол α. Определить момент M пары, которую нужно приложить к стержню, чтобы удержать его в равновесии, а также натяжение T нитей.

8.42 Тренога ABDE, имеющая форму правильной пирамиды, укреплена шарнирно на двух консольных балках. Через блок, укрепленный в вершине E треноги, перекинут трос, равномерно поднимающий с помощью лебедки груз веса P. От блока к лебедке трос тянется параллельно консоли. Определить реакции заделки первой консоли, пренебрегая ее весом и весом треноги. Высота треноги равна l/2.

8.43 Четырехзвенный механизм робота-манипулятора расположен в горизонтальной плоскости Oxy. Длины всех звеньев одинаковы и равны l, масса каждого звена m. Масса объекта манипулирования 2m. Найти моменты сил тяжести относительно координатных осей. Звенья считать однородными стержнями.

online-tusa.com