На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Задачи на тему Устойчивость движения


56.1 Двойной маятник, образованный двумя стержнями длины l и материальными точками с массами m, подвешен на горизонтальной оси, вращающейся с постоянной угловой скоростью ω вокруг оси z. Исследовать устойчивость вертикального положения равновесия маятника. Массой стержней пренебречь.

56.2 Тяжелый шарик находится в полости гладкой трубки, изогнутой по эллипсу x2/a2 + z2/c2=1 и вращающейся вокруг вертикальной оси Oz с постоянной угловой скоростью ω (ось Оz направлена вниз). Определить положения относительного равновесия шарика и исследовать их устойчивость.

56.3 Тяжелый шарик находится в полости гладкой трубки, изогнутой по параболе x2=2pz и вращающейся с постоянной угловой скоростью ω вокруг оси Oz. (Положительное направление оси Oz-вверх.) Определить положение относительного равновесия шарика и исследовать его устойчивость.

56.4 Материальная точка может двигаться по гладкой плоской кривой, вращающейся вокруг вертикальной оси с угловой скоростью ω. Потенциальная энергия П (s) точки задана и зависит только от ее положения, определяемого дугой s, отсчитываемой вдоль привой, r(s)-расстояние точки от оси вращения. Найти условие устойчивости относительного положения равновесия точки.

56.5 Показать, что материальная точка массы m под действием центральной силы притяжения F=arn (а=const, r-расстояние точки до притягивающего центра, n n целое число) может совершать движение по окружности с постоянной скоростью. Найти условие, при котором это движение устойчиво по отношению к координате r.

56.6 Твердое тело свободно качается вокруг горизонтальной оси NT, вращающейся вокруг вертикальной оси Oz с угловой скоростью ω. Точка G-центр инерции тела; плоскость NTG является плоскостью симметрии... М-масса тела. Определить возможные положения относительного равновесия и исследовать их устойчивость.

56.7 Определить положения относительного равновесия маятника, подвешенного с помощью универсального шарнира O к вертикальной оси, вращающейся с постоянной угловой скоростью ω; маятник симметричен относительно своей продольной оси; A и C-его моменты инерции относительно главных центральных осей инерции ξ, η и ζ; h-расстояние центра тяжести маятника от шарнира. Исследовать устойчивость положений равновесия маятника и определить период колебаний около среднего положения равновесия.

56.8 Вертикальная ось симметрии тонкого однородного круглого диска радиуса r и веса Q может свободно вращаться вокруг точки A. В точке В она удерживается двумя пружинами. Оси пружин горизонтальны и взаимно перпендикулярны, их жесткости соответственно равны с1 и с2, причем с2>С1. Пружины кренятся к оси диска на расстоянии L от нижней опоры; расстояние диска от нижней опоры l. Определить угловую скорость ω, которую нужно сообщить диску для обеспечения устойчивости вращения.

56.9 Материальная точка M движется под действием силы тяжести по внутренней поверхности кругового цилиндра радиуса a, ось которого наклонена под углом α к вертикали. Исследовать устойчивость движения по нижней (φ=0) и верхней (φ=π) образующим. Определить период колебаний при движении по нижней образующей.

56.10 Материальная точка вынуждена двигаться по внутренней гладкой поверхности тора, заданного параметрическими уравнениями x=ρ cosφ, y=ρ sinφ, z=b sinθ, ρ=a + b cosθ (ось z направлена вертикально вверх). Найти возможные движения точки, характеризующиеся постоянством угла θ, и исследовать их устойчивость.

56.11 Исследовать устойчивость движения обруча, равномерно катящегося с угловой скоростью ω по горизонтальной плоскости. Плоскость обруча вертикальна; радиус обруча a.

56.12 Колесо с четырьмя симметрично расположенными спицами катится по шероховатой плоскости. Плоскость колеса вертикальна. Ободья колеса и спицы сделаны из тонкой тяжелой проволоки. Радиус колеса a, скорость центра его в исходном движении v. Исследовать устойчивость движения.

56.13 Исследовать устойчивость движения однородного обруча радиуса a, вращающегося вокруг вертикального диаметра с угловой скоростью ω. Нижняя точка обруча соприкасается с горизонтальной плоскостью.

56.14 Па материальную точку массы m, отклоненную от положения равновесия, действуют сила Fr по величине пропорциональная отклонению ОМ=r=√(x2 + y2) из этого положения и направленная к нему; сила Fφ и перпендикулярная первой (боковая сила), по величине тоже пропорциональная отклонению r: |Fr|=c11r, |Fφ|=c12r. Исследовать методом малых колебаний устойчивость равновесного положения точки.

56.15 При исследовании устойчивости движения точки в предыдущей задаче принять во внимание силы сопротивления, пропорциональные первой степени скорости Rx=-βx\', Ry=-βy\' (β-коэффициент сопротивления).

56.16 Если у стержня, описанного в задаче 56.14, жесткости на изгиб не равны, то реакции конца стержня, действующие на массу m, определяются выражениями Fx=-c11x + c12у, Fy=c21x-c22y. Выяснить методом малых колебаний условия устойчивости равновесия.

56.17 Уравнение движения муфты центробежного регулятора двигателя имеет вид mx\'\' + βx\' + cx=A(ω-ω0), где x-перемещение муфты регулятора, m-инерционный коэффициент системы, β-коэффициент сопротивления, c-жесткость пружин регулятора, ω-мгновенная и ω0-средняя угловые скорости машины, A-постоянная. Уравнение движения машины имеет вид J(dω/dt)=-Bx (B-постоянная, J-приведенный момент инерции вращающихся частей двигателя). Установить условия устойчивости системы, состоящей из двигателя и регулятора.

56.18 Симметричный волчок, острие которого помещено в неподвижном гнезде, вращается вокруг своей вертикально расположенной оси. На него поставлен второй симметричный волчок, который также вращается вокруг вертикальной оси. Острие оси второго волчка опирается на гнездо в оси первого волчка. М и М\'-массы верхнего и нижнего волчков, С и С\'-их моменты инерции относительно осей симметрии; А и A\'-моменты инерции относительно горизонтальных осей, проходящих через острия; с и с\'-расстояния центров масс волчков от соответствующих остриев; h-расстояние между остриями. Угловые скорости волчков Ω и Ω\'. Вывести условия устойчивости системы.

56.19 Деталь 1 перемещается поступательно с постоянной скоростью v0 и через пружину передает движение ползуну 2. Сила трения между ползуном и направляющими 3 зависит от скорости ползуна v следующим образом: Н=Н0 sign v-αv + βv3, где H0, α, β-положительные коэффициенты. Определить, при каких значениях v0 равномерное движение ползуна является устойчивым.

56.20 Агрегат, состоящий из двигателя 1 и машины 2, соединенных упругой муфтой 3 с жесткостью c, рассматривается как двухмассовая система. К ротору двигателя, имеющему момент инерции J1 приложен момент М1 зависящий от угловой скорости ротора φ: М1=М0-μ1(φ-ω0). К валу машины, имеющему момент инерции J2, приложен момент сил сопротивления, зависящий от угловой скорости вала φ: М2=М0-μ2(φ-ω0).Коэффициенты μ1 и μ2 положительны. Определить условия, при которых вращение системы с угловой скоростью ω0 является устойчивым.

online-tusa.com