На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по теоретической механике с решениями
Агрегат, состоящий из двигателя 1 и машины 2, соединенных упругой муфтой 3 с жесткостью c, рассматривается как двухмассовая система. К ротору двигателя, имеющему момент инерции J1 приложен момент М1 зависящий от угловой скорости ротора φ: М101(φ-ω0). К валу машины, имеющему момент инерции J2, приложен момент сил сопротивления, зависящий от угловой скорости вала φ: М202(φ-ω0).Коэффициенты μ1 и μ2 положительны. Определить условия, при которых вращение системы с угловой скоростью ω0 является устойчивым.


Решение задачи 56.20
(Мещерский И.В.)
<< Предыдущее Следующее >>
56.18 Симметричный волчок, острие которого помещено в неподвижном гнезде, вращается вокруг своей вертикально расположенной оси. На него поставлен второй симметричный волчок, который также вращается вокруг вертикальной оси. Острие оси второго волчка опирается на гнездо в оси первого волчка. М и М'-массы верхнего и нижнего волчков, С и С'-их моменты инерции относительно осей симметрии; А и A'-моменты инерции относительно горизонтальных осей, проходящих через острия; с и с'-расстояния центров масс волчков от соответствующих остриев; h-расстояние между остриями. Угловые скорости волчков Ω и Ω'. Вывести условия устойчивости системы. 56.19 Деталь 1 перемещается поступательно с постоянной скоростью v0 и через пружину передает движение ползуну 2. Сила трения между ползуном и направляющими 3 зависит от скорости ползуна v следующим образом: Н=Н0 sign v-αv + βv3, где H0, α, β-положительные коэффициенты. Определить, при каких значениях v0 равномерное движение ползуна является устойчивым. 55.17 Платформа тележки опирается в точках А и В на две рессоры одинаковой жесткости c, расстояние между осями рессор AB=l; центр масс С платформы расположен на прямой AB, являющейся осью симметрии платформы, на расстоянии AC=a=l/3 от точки A (см. рисунок к задаче 55.16). Радиус инерции платформы относительно оси, проходящей через ее центр масс перпендикулярно прямой А В и лежащей в плоскости платформы, принять равным 0,2l; вес платформы равен Q. Найти малые колебания платформы, возникающие под действием удара, приложенного в центре масс платформы перпендикулярно ее плоскости, удара равен S. 55.18 Две одинаковые материальные точки М1 и М2 массы m каждая прикреплены симметрично на равных расстояниях от концов к натянутой нити, имеющей длину 2(а + Ь); натяжение нити равно p. Определить частоты главных колебаний и найти главные координаты.
online-tusa.com | SHOP