На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по геометрии с решениями
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD=2 и sin(∠ACD)*sin(∠BCD)=1/3. Найдите расстояние от точки D до хорды AB.

Для просмотра изображения в полном размере нажмите на него
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD=2 и sin

Решение задачи 14.19
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее Следующее >>
14.17. В некоторый угол вписана окружность радиуса 5. Хорда, соединяющая точки касания, равна 8. К окружности проведены две касательные, параллельные хорде. Найдите стороны полученной трапеции. 14.18. Расстояние от центра O окружности, описанной около треугольника ABC, до стороны BC равно 1. Найдите расстояние от точки пересечения высот до вершины A. 14.20. В трапеции ABCD основание AB=a, основание CD=b (a < b). Окружность, проходящая через вершины A, B и C, касается стороны AD. Найдите диагональ AC. 14.21. Точка пересечения медиан треугольника ABC, вершина A и середины сторон AB и AC лежат на одной окружности. Найдите медиану, проведённую из вершины A, если BC=a.
online-tusa.com | SHOP