На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

задачи на тему Давление вращающегося твердого тела на ось вращения


42.1 Центр масс махового колеса массы 3000 кг находится на расстоянии 1 мм от горизонтальной оси вала; расстояния подшипников от колеса равны между собой. Найти силы давления на подшипники, когда вал делает 1200 об/мин. Маховик имеет плоскость симметрии, перпендикулярную оси вращения.

42.2 Однородный круглый диск массы M равномерно вращается с угловой скоростью ω вокруг неподвижной оси, расположенной в плоскости диска и отстоящей от его центра масс C на расстоянии OC=a. Определить силы динамического давления оси на подпятник A и подшипник B, если OB=OA. Оси x и y неизменно связаны с диском.

42.3 Решить предыдущую задачу в предположении, что при наличии сил сопротивления угловая скорость диска убывает по закону ω=ω0-ε0t, где ω0 и ε0-положительные постоянные.

42.4 К вертикальной оси AB, вращающейся равноускоренно с угловым ускорением ε, прикреплены два груза C и D посредством двух перпендикулярных оси AB и притом взаимно перпендикулярных стержней OC=OD=r. Определить силы динамического давления оси AB на подпятник A и подшипник B. Грузы C и D считать материальными точками массы M каждый. Массами стержней пренебречь. В начальный момент система находилась в покое. Оси x и y неизменно связаны со стержнями.

42.5 Стержень AB длины 2l, на концах которого находятся грузы равной массы M, вращается равномерно с угловой скоростью ω вокруг вертикальной оси Oz, проходящей через середину O длины стержня. Расстояние точки O от подшипника C равно a, от подпятника D равно b. Угол между стержнем AB и осью Oz сохраняет постоянную величину α. Пренебрегая массой стержня и размерами грузов, определить проекции сил давления на подшипник C и подпятник D в тот момент, когда стержень находится в плоскости Oyz.

42.6 Ha концы оси AB надеты два одинаковых кривошипа AC и BD длины l и массы M1 каждый, заклиненные под углом 180° относительно друг друга. Ось AB длины 2a и массы M2 вращается с постоянной угловой скоростью ω в подшипниках E и F, расположенных симметрично на расстоянии 2b друг от друга. Определить силы давления NE и NF на подшипники в тот момент, когда кривошип AC направлен вертикально вверх. Массу каждого кривошипа считать равномерно распределенной вдоль его оси.

42.7 К горизонтальному валу AB, вращающемуся с постоянной угловой скоростью ω, прикреплены два равных, перпендикулярных ему стержня длины l, лежащих во взаимно перпендикулярных плоскостях (см. рисунок). На концах стержней расположены шары D и E массы m каждый. Определить силы динамического давления вала на опоры A и B. Шары считать материальными точками; массами стержней пренебречь.

42.8 К вертикальному валу AB, вращающемуся с постоянной угловой скоростью ω, жестко прикреплены два стержня. Стержень OE образует с валом угол φ, стержень OD перпендикулярен плоскости, содержащей вал AB и стержень OE. Даны размеры: OE=OD=l, AB=2a. К концам стержней прикреплены два шара E и D массы m каждый. Определить силы динамического давления вала на опоры A и B. Шары D и E считать точечными массами; массами стержней пренебречь.

42.9 Использовав условие задачи 34.1, определить силы динамического давления коленчатого вала на подшипники K и L. Вал вращается равномерно с угловой скоростью ω. При решении можно воспользоваться ответами к задачам 34.1 и 34.23.

42.10 Однородный стержень KL, прикрепленный в центре под углом α к вертикальной оси AB, вращается равноускоренно вокруг этой оси с угловым ускорением ε. Определить силы динамического давления оси AB на подпятник A и подшипник B, если: M-масса стержня, 2l-его длина, OA=OB=h/2; OK=OL=l. В начальный момент система находилась в покое.

42.11 Однородная прямоугольная пластинка OABD массы M со сторонами a и b, прикрепленная стороной OA к валу OE, вращается с постоянной угловой скоростью ω. Расстояние между опорами OE=2a. Вычислить боковые силы динамического давления вала на опоры O и E.

42.12 Прямой однородный круглый цилиндр массы M, длины 2l и радиуса r вращается с постоянной угловой скоростью ω вокруг вертикальной оси Oz, проходящей через центр масс O цилиндра; угол между осью цилиндра Oζ и осью Oz сохраняет при этом постоянную величину α. Расстояние H1H2 между подпятником и подшипником равно h. Определить боковые силы давления: N1 на подпятник и N2 на подшипник.

42.13 Вычислить силы давления в подшипниках A и B при вращении вокруг оси AB однородного тонкого круглого диска CD паровой турбины, предполагая, что ось AB проходит через центр O диска, но вследствие неправильного рассверливания втулки составляет с перпендикуляром к плоскости диска угол AOE=α=0,02 рад. Дано: масса диска 3,27 кг, радиус его 20 см, угловая скорость соответствует 30000 об/мин, расстояние AO=50 см, OB=30 см; ось AB считать абсолютно твердой и принять sin 2α=2α.

42.14 В результате неточной сборки круглого диска паровой турбины плоскость диска образует с осью AB угол α, а центр масс C диска не лежит на этой оси. Эксцентриситет OC=a. Найти боковые силы динамического давления на подшипники A и B, если масса диска равна M, радиус его R, а AO=OB=h; угловая скорость вращения диска постоянна и равна ω.

42.15 Однородный круглый диск массы M и радиуса R насажен на ось AB, проходящую через точку O диска и составляющую с его осью симметрии Cz1 угол α. OL-проекция оси z, совмещенной с осью AB, на плоскость диска, причем OE=a, OK=b. Вычислить боковые силы динамического давления на подшипники A и B, если диск вращается с постоянной угловой скоростью ω, а AO=OB=h.

42.16 Однородная прямоугольная пластинка массы M равномерно вращается вокруг своей диагонали AB с угловой скоростью ω. Определить силы динамического давления пластинки на опоры A и B, если длины сторон равны a и b.

42.17 С какой угловой скоростью должна вращаться вокруг катета AB=a однородная пластинка, имеющая форму равнобедренного прямоугольного треугольника ABD, чтобы сила бокового давления на нижнюю опору B равнялась нулю? Расстояние между опорами считать равным длине катета AB.

42.18 Вращающаяся часть подъемного крана состоит из стрелы CD длины L и массы M1, противовеса E и груза K массы M2 каждый. (См. рисунок к задаче 34.31.) При включении постоянного тормозящего момента кран, вращаясь до этого с угловой скоростью, соответствующей n=1,5 об/мин, останавливается через 2 c. Рассматривая стрелу как однородную тонкую балку, а противовес с грузом как точечные массы, определить динамические реакции опор A и B крана в конце его торможения. Расстояние между опорами крана AB=3 м, M2=5 т, M1=8 т, α=45°, L=30 м, l=10 м, центр масс всей системы находится на оси вращения; отклонением груза от плоскости крана пренебречь. Оси x, y связаны с краном. Стрела CD находится в плоскости yz.

online-tusa.com