Решение задач → Задачи по геометрии с решениями
На биссектрисе угла с вершиной L взята точка A. Точки K и M-основания перпендикуляров, опущенных из точки A на стороны угла. На отрезке KM взята точка P (KP < PM), и через неё перпендикулярно к отрезку AP проведена прямая, пересекающая прямую KL в точке Q (K между Q и L), а прямую ML-в точке S. Известно, что ∠KLM=α, KM=a, QS=b. Найдите QK.
Для просмотра изображения в полном размере нажмите на него |
Решение задачи 13.35 (ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
|
Следующее >>
|
13.33. В трапеции MNPQ (MQ || NP) угол NQM в два раза меньше угла MPN. Известно, что NP=MP=13/2, MQ=12. Найдите площадь трапеции.
|
13.34. Дан угол, равный α. На его биссектрисе взята точка K; P и M-проекции K на стороны угла. На отрезке PM взята точка A, причём KA=a. Прямая, проходящая через A перпендикулярно KA, пересекает стороны угла в точках B и C. Найдите площадь треугольника BKC.
|
13.36. В выпуклом четырёхугольнике ABCD проведены диагонали AC и BD. Известно, что AD=2, ∠ABD=∠ACD=90° и расстояние между центрами окружностей, вписанных в треугольники ABD и ACD, равно √2. Найдите BC.
|
13.37. В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает прямую AC в точке M, а перпендикуляр, проходящий через середину стороны AC, пересекает прямую AB в точке N. Известно, что MN=BC и прямая MN перпендикулярна прямой BC. Найдите углы треугольника ABC.
|
|