На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
Вне правильного треугольника ABC, но внутри угла BAC взята точка M так, что угол CMA равен 30° и угол BMA равен α. Найдите угол ABM.
Для просмотра изображения в полном размере нажмите на него
Решение задачи 13.32
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
Следующее >>
13.30. В треугольнике ABC угол ABC равен α, угол BCA равен 2α. Окружность, проходящая через точки A, C и центр описанной около треугольника ABC окружности, пересекает сторону AB в точке M. Найдите отношение AM к AB.
13.31. Точка E лежит на продолжении стороны AC правильного треугольника ABC за точку C. Точка K-середина отрезка CE. Прямая, проходящая через точку A перпендикулярно AB, и прямая, проходящая через точку E перпендикулярно BC, пересекаются в точке D. Найдите углы треугольника BKD.
13.33. В трапеции MNPQ (MQ || NP) угол NQM в два раза меньше угла MPN. Известно, что NP=MP=13/2, MQ=12. Найдите площадь трапеции.
13.34. Дан угол, равный α. На его биссектрисе взята точка K; P и M-проекции K на стороны угла. На отрезке PM взята точка A, причём KA=a. Прямая, проходящая через A перпендикулярно KA, пересекает стороны угла в точках B и C. Найдите площадь треугольника BKC.
online-tusa.com
|
SHOP