Решение задач → Задачи по геометрии с решениями
В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к BC, пересекает сторону AD в точке M. Докажите, что EM-медиана треугольника AED, и найдите её длину, если AB=7, CE=3, ∠ADB=α.
Для просмотра изображения в полном размере нажмите на него |
Решение задачи 13.28 (ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
|
Следующее >>
|
13.26. В параллелограмме ABCD острый угол равен α. Окружность радиуса r проходит через вершины A, B, C и пересекает прямые AD и CD в точках M и N. Найдите площадь треугольника BMN.
|
13.27. Окружность, проходящая через вершины A, B и C параллелограмма ABCD, пересекает прямые AD и CD в точках M и N соответственно. Точка M удалена от вершин B, C и D на расстояния 4, 3 и 2 соответственно. Найдите MN.
|
13.29. Дан треугольник ABC. Из вершины A проведена медиана AM, а из вершины B-медиана BP. Известно, что угол APB равен углу BMA. Косинус угла ACB равен 0,8 и BP=1. Найдите площадь треугольника ABC.
|
13.30. В треугольнике ABC угол ABC равен α, угол BCA равен 2α. Окружность, проходящая через точки A, C и центр описанной около треугольника ABC окружности, пересекает сторону AB в точке M. Найдите отношение AM к AB.
|
|