Решение задач → Задачи по теоретической механике с решениями
Задание Д.13 вариант 28. Механизм состоит из шестерни с кулачками, которая приводится во вращение вокруг неподвижной горизонтальной оси O. Масса механизма m=50 кг, радиус инерции относительно оси вращения i0=0,2 м. Механизм сбрасывает металлические болванки массой m0=2 кг из точки A горизонтальной плоскости AB на горизонтальную плоскость ED на расстояние d=1,5 м, отсчитываемое по горизонтали от точки A. Плоскость ED расположена ниже плоскостиAB на высоту h=1 м. Неупругий удар между кулачком и болванкой (k1=0) происходит на расстоянии l=0,4 м от оси вращения механизма. Коэффициент восстановления при ударе болванки о гладкую горизонтальную плоскость в точке E k2=0,2. Принимая болванку за материальную точку, определить угловую скорость шестерни в начале удара, а также ударные импульсы, испытываемые болванкой в точках A и E.
Решение задачи 13.28 (Яблонский)
<< Предыдущее
|
Следующее >>
|
Задание Д.13 вариант 26. В эпициклическом механизме кривошип OC массой m=3 кг и длиной l=30 см вращается с угловой скоростью ω0=2 рад/с, а зубчатое колесо 1-с угловой скоростью ω1=3 рад/с. Масса зубчатого колеса 2 m2=10 кг, а радиус r2=10 см. В некоторый момент времени колесо 1 внезапно останавливают. Считая колесо 2 однородным сплошным диском, а кривошип-однородным тонким стержнем, определить угловую скорость колеса 2 в конце удара, а также ударные импульсы в точках A и C.
|
Задание Д.13 вариант 27. В точку D абсолютно жесткой балки массой m=5000 кг и длиной l=3 м с высоты h=1,2 м надает груз массой m=400 кг. Балка имеет шарнирно-неподвижную опору A и упругую опору B; в состоянии покоя балка занимает горизонтальное положение, показанное на чертеже. Удар груза о балку-неупругий. Считать балку однородным тонким стержнем, а груз-материальной точкой. Определить угловую скорость балки в конце удара и проверить найденное выражение угловой скорости по теореме Карно. Определить также ударный импульс, воспринимаемый опорой A.
|
Задание Д.13 вариант 29. Маятник, отклоненный от положения устойчивого равновесия на некоторый угол α, падает без начальной скорости под действием собственного веса, вращаясь вокруг неподвижной оси O, и в вертикальном положении точкой A ударяется о покоящийся однородный полый тонкостенный цилиндр массой m0=200 кг и радиусом r=0,2 м. Масса маятника m=100 кг, радиус его инерции относительно оси вращения i0=1 м. Расстояния от точки O пересечения оси вращения вертикальной плоскостью симметрии до центра тяжести C маятника и до точки A, находящейся в той же плоскости симметрии, OC=d=0,8 м и OA=l=1,2 м. Коэффициент восстановления при соударении маятника и цилиндра k=0,6. После удара цилиндр скользит, не вращаясь, по гладкой горизонтальной плоскости и, натолкнувшись на ступеньку DE высотой h=0,05 м, поднимается на нее, не перемещаясь дальше ребра E. Отрыва цилиндра от ребра E при ударе о ступеньку не происходит, а абсолютно шероховатая поверхность ступеньки исключает проскальзывание цилиндра при ударном воздействии. Определить угол α первоначального отклонения маятника, а также ударный импульс, испытываемый цилиндром со стороны маятника.
|
Задание Д.13 вариант 30. Рычаг состоит из двух абсолютно жестких стержней OD и OF, соединенных под прямым углом; OD=a=1 м, OF=b=1,5 м. Рычаг имеет шарнирно-неподвижную опору O и удерживается в точке E пружиной. Масса рычага m=400 кг, радиус его инерции относительно оси вращения O i0=0,4 м. Рычаг находится в покос, соответствующем статической деформации пружины, при этом его стержень OD горизонтален. В точку D рычага падает груз A массой mA=20 кг с высоты h=0,5 м. Удар груза о стержень OD рычага-неупругий (k1=0). Приобретя угловую скорость, рычаг точкой F ударяется о неподвижное тело B массой mB=120 кг; коэффициент восстановления при этом ударе k2=0,2. Считать груз A и тело B материальными точками. Определить, какую скорость получает тело B в конце его соударения со стержнем OF, а также ударный импульс, воспринимаемый телом B.
|
|