Решение задач → Задачи по теоретической механике с решениями
Задание Д.13 вариант 7. Рычаг состоит из двух абсолютно жестких стержней AB и AD, соединенных под прямым углом. Рычаг имеет неподвижную горизонтальную ось вращения A и удерживается в точке B пружиной; AD=a=1,5 м. В точку D горизонтального стержня рычага, находящегося в покое, с высоты h=0,5 м падает груз массой m0=100 кг. Масса рычага m=1000 кг, радиус его инерции относительно оси вращения iA=0,5 м. Положение центра тяжести С рычага определяется координатами xC=0,4 м и yC=0,3 м. Считать груз материальной точкой, а удар груза о рычаг принять неупругим. Определить ударный импульс, испытываемый грузом, а также горизонтальную и вертикальную составляющие ударного импульса, воспринимаемого опорой A.
Для просмотра изображения в полном размере нажмите на него |
Решение задачи 13.7 (Яблонский)
<< Предыдущее
|
Следующее >>
|
Задание Д.13 вариант 5. Транспортируемые грузы катятся из положения A без начальной скорости по наклонной плоскости, составляющей угол α=15° с горизонтом, проходя вдоль нее расстояние s1=3 м, и продолжают катиться по горизонтальной плоскости. Скольжение отсутствует; коэффициент трения качения δ=0,8 см. Определить, на каком расстоянии s2 должна быть поставлена упорная ступенька высотой h=0,2 м, чтобы грузы, ударившись о ребро F ступеньки, лишь поднимались на нее, не перемещаясь дальше ребра F. Расчет произвести для груза-однородного сплошного цилиндра массой m=500 кг и радиусом r=0,5 м. Считать, что отрыва цилиндра от ступеньки не происходит, а поверхность ступеньки абсолютно шероховата, т.е. препятствует скольжению цилиндра при ударном воздействии. Определить также горизонтальную и вертикальную составляющие ударного импульса, воспринимаемого цилиндром со стороны ступеньки, при указанных условиях.
|
Задание Д.13 вариант 6. Маятник состоит из стержня длиной l=1,2 м и однородного круглого диска радиусом r=0,1 м. Масса стержня пренебрежимо мала; масса диска m0=5 кг. Маятник, отклоненный от положения устойчивого равновесия, падает под действием собственного веса, вращаясь вокруг неподвижной оси O; в вертикальном положении, имея угловую скорость ω=3 рад/с, маятник ударяется о точку B боковой грани тела D-однородного прямоугольного параллелепипеда массой m=6m0 (a=0,8 м; b=0,4 м; h=0,2 м). Коэффициент восстановления при ударе k=0,5. Поверхности маятника и тела D в точке соударения гладкие. Плоскость, на которой покоится тело D, абсолютно шероховата, т. е. не допускает скольжения тела при ударном воздействии. Определить угловую скорость вращения тела D вокруг ребра A в конце удара, а также ударный импульс, воспринимаемый шероховатой поверхностью в точке A.
|
Задание Д.13 вариант 8. На тележке 1 лежит груз-однородный полый тонкостенный цилиндр массой m0=500 кг и радиусом r=0,4 м, который удерживается от возможного перемещения по тележке ступенькой и наклонной плоскостью, составляющей угол α=60° с горизонтом. Тележка 1, имеющая вместе с грузом массу m1=3000 кг, двигаясь по горизонтальному прямолинейному пути, наталкивается со скоростью v1=3 м/с на неподвижную вагонетку 2 общей массой m2=6000 кг. В конце соударения тележка 1 останавливается, а цилиндр, ударяясь о наклонную плоскость, начинает катиться по ней. Отрыва цилиндра при ударе о наклонную плоскость не происходит; абсолютная шероховатость наклонной плоскости исключает скольжение цилиндра при ударном воздействии. Считать вертикальные плоскости соударения тележки и вагонетки гладкими. Поверхность рельсов абсолютно шероховата, т. е. препятствует проскальзыванию колес при соударении тележек. Моменты инерции колес относительно их осей пренебрежимо малы. Определить угловую скорость цилиндра в конце удара о наклонную плоскость; проверить найденное выражение угловой скорости цилиндра по теореме Карно. Определить скорость вагонетки 2 в конце соударения с тележкой 1.
|
Задание Д.13 вариант 9. Тело D массой m0, поступательно движущееся по горизонтальной плоскости, ударяется со скоростью v0=3 м/с об узел C покоящейся фермы. Поверхности тела D и узла C в точке соударения-гладкие; коэффициент восстановления при ударе k=0,5. Абсолютно жесткая ферма имеет шарнирно-неподвижную опору О и упругую опору A; BC=a=2 м. Масса фермы m=20m0, радиус ее инерции относительно горизонтальной оси вращения O i0=1 м. Определить угловую скорость фермы, в конце удара и проверить ее по теореме Карно. Определить, какую скорость поступательного движения по гладкой горизонтальной плоскости получит тело D после удара.
|
|