Поиск задач
Решение задач  →  Задачи по геометрии с решениями
Даны две окружности с радиусами R1, R2 и расстоянием между центрами d. Докажите, что если каждое из чисел R1, R2 и d меньше суммы двух других сторон, то окружности пересекаются в двух точках.

Для просмотра изображения в полном размере нажмите на него
Даны две окружности с радиусами R1, R2 и расстоянием между центрами d. Докажите, что если каждое из чисел R1, R2 и d меньше суммы двух других
Решение задачи
(Погорелов А.В. 8 класс)


<< Предыдущее Следующее >>
Даны три положительных числа a, b, c. Докажите, что если каждое из этих чисел меньше суммы двух других, то существует треугольник со сторонами a, b, c. Можно ли построить треугольник со сторонами: 1) a=1 см, b=2 см, c=3 см; 2) a=2 см, b=3 см, c=4 см; 3) a=3 см, b=7 см, c=11 см; 4) a=4 см, b=5 см, c=9 см? У прямоугольного треугольника один катет равен 8 см, а синус противолежащего ему угла равен 0,8. Найдите гипотенузу и второй катет. В прямоугольном треугольнике гипотенуза равна a, а один из острых углов α. Найдите второй острый угол и катеты.