На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
В данную окружность впишите прямоугольный треугольник, катеты которого проходят через две данные точки внутри окружности.
Для просмотра изображения в полном размере нажмите на него
Решение задачи 2.3
(Пособие для абитуриентов и старших классов)
<< Предыдущее
Следующее >>
2.1. Пусть M и N-середины сторон CD и DE правильного шестиугольника ABCDEF, P-точка пересечения отрезков AM и BN. Докажите, что S(ABP)=S(MDNP)
2.2. В окружность радиуса 2√7 вписана трапеция ABCD, причем ее основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P такой, что AP:PD=1:3. Найдите площадь треугольника BPE.
2.4 На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP=BP + CP.
2.5 AA1 и BB1-высоты остроугольного треугольника ABC. Докажите, что: а) треугольник AA1C подобен треугольнику BB1C; б) треугольник ABC подобен треугольнику A1B1C.
online-tusa.com
|
SHOP