На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
В условиях предыдущей
задачи
составить канонические уравнения движения волчка.
Для просмотра изображения в полном размере нажмите на него
Решение задачи 49.12
(Мещерский И.В.)
<< Предыдущее
Следующее >>
49.10 Пользуясь результатами, полученными при решении предыдущей задачи, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.
49.11 Положение оси симметрии z волчка, движущегося относительно неподвижной точки O под действием силы тяжести, определяется углами Эйлера, углом прецессии ψ и углом нутации θ. Составить функцию Гамильтона для углов ψ, θ и φ (угол собственного вращения) и соответствующих импульсов, если m-масса волчка, l-расстояние от его центра масс до точки O, C-момент инерции относительно оси z, A-момент инерции относительно любой оси, лежащей в экваториальной плоскости, проходящей через точку O.
49.13 Свободная точка единичной массы движется в вертикальной плоскости xy под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби-Гамильтона и найти его полный интеграл (ось y направлена вертикально вверх).
49.14 Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби-Гамильтона, найти первые интегралы уравнений движения точки.
online-tusa.com
|
SHOP