На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по геометрии с решениями
В треугольник ABC со сторонами AB=6, BC=5, AC=7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH треугольника ABC в точке M. Найдите площадь треугольника DMC.

Для просмотра изображения в полном размере нажмите на него
В треугольник ABC со сторонами AB=6, BC=5, AC=7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне

Решение задачи 14.32
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее Следующее >>
14.30. В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведённая в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF=a, AD=b. Найдите EF. 14.31. В трапеции ABCD известно, что BC параллельна AD, угол ∠ABC=90°. Прямая, перпендикулярная стороне CD, пересекает сторону AB в точке M, а сторону CD-в точке N. Известно также, что MC=a, BN=b, а расстояние от точки D до прямой MC равно c. Найдите расстояние от точки A до прямой BN. 14.33. Две окружности касаются друг друга внутренним образом в точке A. Хорда BC большей окружности касается меньшей в точке D. Прямая AD вторично пересекает большую окружность в точке M. Найдите MB, если MA=a, MD=b. 14.34. Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, DC и DE равны соответственно a, b и c. Найдите расстояние от вершины A до прямой BE.
online-tusa.com | SHOP