На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
Три окружности радиусов 1, 2 и 3 касаются друг друга внешним образом. Найдите радиус окружности, проходящей через точки касания этих окружностей.
Для просмотра изображения в полном размере нажмите на него
Решение задачи 9.32
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
Следующее >>
9.30. Две окружности касаются внешним образом в точке C. Общая внешняя касательная касается первой окружности в точке A, а второй-в точке B. Прямая AC пересекает вторую окружность в точке D, отличной от C. Найдите BC, если AC=9, CD=4.
9.31. Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.
9.33. Две окружности радиусов 5 и 4 касаются внешним образом. Прямая, касающаяся меньшей окружности в точке A, пересекает большую в точках B и C, причём AB=BC. Найдите AC.
9.34. Точка B-середина отрезка AC, причём AC=6. Проведены три окружности радиуса 1 с центрами A, B и C. Найдите радиус четвёртой окружности, касающейся всех трёх данных.
online-tusa.com
|
SHOP