На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
В треугольнике ABC биссектриса AD делит сторону BC в отношении BD:DC=2:1. В каком отношении медиана CE делит эту биссектрису?
Для просмотра изображения в полном размере нажмите на него
Решение задачи 6.12
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
Следующее >>
6.10. В треугольнике ABC известно, что AB=c, BC=a, AC=b. В каком отношении центр вписанной окружности треугольника делит биссектрису CD?
6.11. На стороне PQ треугольника PQR взята точка N, а на стороне PR-точка L, причем NQ=LR. Точка пересечения отрезков QL и NR делит отрезок QL в отношении m:n, считая от точки Q. Найдите отношение PN:PR.
6.13. На сторонах AB, BC и AC треугольника ABC взяты соответственно точки K, L и M, причём AK:KB=2:3, BL:LC=1:2, CM:MA=3:1. В каком отношении отрезок KL делит отрезок BM?
6.14. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK=2:3, а на стороне AC взята точка L, делящая AC в отношении AL:LC=5:3. Точка Q пересечения прямых CK и BL, отстоит от прямой AB на расстоянии 1,5. Найдите сторону AB.
online-tusa.com
|
SHOP