Решение задач → Задачи по теоретической механике с решениями
В однородном круглом диске радиуса R=1 м на расстоянии l от центра вырезано круглое отверстие радиуса r. Величины l и r могут принимать различные значения, они считаются случайными, независимыми, подчиняющимися гауссовскому распределению. Их математические ожидания соответственно равны ml==0,1 м и mr=0,05 м, а средние квадратические отклонения равны ма/=0,01 м и Or=0,005.м. Определить такое значение смещения центра масс относительно центра диска, вероятность превышения которого составляет 0,001. В выражении для смещения центра масс пренебречь слагаемыми с произведениями отклонении величин l и r от их математических ожиданий.
Решение задачи 58.5 (Мещерский И.В.)
<< Предыдущее
|
Следующее >>
|
58.3. Определить необходимую силу Q затяжки болта, соединяющего две детали, находящиеся под действием растягивающей силы Р, исходя из того, что вероятность проскальзывания должна быть 5*10-4. Сила Р и коэффициент трения f между деталями могут принимать различные значения; предполагается, что их можно считать независимыми случайными величинами с гауссовским законом распределения, причем их математические ожидания соответственно равны mр=2000 Н, mf=0,1, а средние квадратические отклонения σр=200 Н, σf=0,02.
|
58.4. Груз массы m=200 кг находится на шероховатой наклонной плоскости. Наклон плоскости и коэффициент трения скольжения могут быть различными. Угол γ наклона плоскости относительно горизонта и коэффициент трения f считаются независимыми случайными величинами с гауссовским распределением, их математические ожидания соответственно равны mγ=0, mf=0,2, а средние квадратические отклонения равны σγ=3° и σf=0,04. Определить значение горизонтальной силы Q, достаточной для того, чтобы с вероятностью 0,999 сдвинуть груз по плоскости
|
58.6. На уравновешенном роторе, масса которого равна 1000 кг, симметрично относительно оси вращения закреплены две однотипные детали А1 и A2. Случайные отклонения ΔM1 и ΔM2 их масс М1 и М2 от номинального значения (математического ожидания) и случайные смещения Δх1, Δу1 и Δх2 и Δу2 их центров масс относительно точек, лежащих на одном диаметре на расстоянии l=1 м от оси ротора, приводят к тому, что центр масс С ротора вместе с деталями оказывается смещенным относительно оси. Поэтому координаты хс и ус центра масс являются случайными. Предполагается, что случайные величины М1 и М2, Δх1 Δу1 и Δх2, Δу2 независимы и распределены по гауссовскому закону, их математические ожидания соответственно равны mM1=mM2=100 кг, mΔx1=mΔy1=mΔx2=mΔy2=0, а средние квадратические отклонения равны σM1=σM2=0,5 кг, σΔx1=σΔy1=σΔx2=σΔy2=3 мм. Определить границы симметричных интервалов для координат хс и ус центра масс ротора вместе с деталями, вероятность нахождения в которых равна α=0,99.
|
58.7. Однородная прямоугольная платформа массы 1000 кг подвешена к опоре на четырех тросах одинаковой длины, сходящихся в одной точке. Расстояние платформы до точки подвеса равно h=2 м. На платформу установлены четыре груза малых размеров. Массы и расположение грузов случайны. Предполагается, что массы грузов и их прямоугольные координаты хi и уi, отсчитываемые от центра платформы, взаимно независимы и имеют гауссовское распределение. Математические ожидания масс всех четырех грузов одинаковы и равны mM=100 кг, среднеквадратические отклонения также одинаковы и равны σM=20 кг. Координаты грузов имеют нулевые математические ожидания, средние квадратические отклонения координат равны σх=0,5 м и σу=0,7 м. Определить границы таких симметричных интервалов для углов наклона θx и θy платформы, находящейся в равновесии при установленных грузах, вероятности нахождения в которых равны 0,99 Углы считать малыми
|
|