На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по теоретической механике с решениями
Пользуясь принципом Гамильтона-Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение малых колебаний подвешенной за один конец нити.


Решение задачи 49.20
(Мещерский И.В.)
<< Предыдущее Следующее >>
49.18 Пользуясь принципом Гамильтона-Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение колебаний струны. 49.19 Абсолютно гибкая однородная и нерастяжимая нить длины l подвешена за один конец в точке O. Определить действие по Гамильтону для малых колебаний нити около вертикали, происходящих под действием силы тяжести. Масса единицы длины нити равна ρ. 49.21. Пользуясь принципом Гамильтона-Остроградского, составить дифференциальное уравнение продольных колебаний тонкого стержня, заделанного на одном конце и с массой m на другом конце и получить граничные условия. Плотность материала стержня ρ, модуль продольной упругости E, площадь поперечного сечения F, длина l. 49.22. Составить дифференциальное уравнение крутильных колебаний стержня, заделанного на одном конце, с диском на другом конце. Плотность материала стержня ρ, модуль сдвига G, поперечное сечение-круг радиуса r, длина стержня l. Момент инерции диска J.
online-tusa.com | SHOP