На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по теоретической механике с решениями
По неподвижной призме A, расположенной под углом α к горизонту, скользит призма В массы m2. К призме B, посредством цилиндрического шарнира O и спиральной пружины с коэффициентом жесткости c, присоединен тонкий однородный стержень OD массы m1 и длины l. Стержень совершает колебания вокруг оси O, перпендикулярной плоскости рисунка. Положения призмы В и стержня OD определены посредством координат s и φ. Написать дифференциальные уравнения движения материальной системы, состоящей из призмы В и стержня OD, пренебрегая силами трения. Определить период малых колебаний стержня OD, если m1gl cos2α< 2с.


Решение задачи 48.37
(Мещерский И.В.)
<< Предыдущее Следующее >>
48.35 Составить уравнения движения эллиптического маятника, состоящего из ползуна M1 массы m1, скользящего без трения по горизонтальной плоскости, и шарика M2 массы m2, соединенного с ползуном стержнем AB длины l. Стержень может вращаться вокруг оси A, связанной с ползуном и перпендикулярной плоскости рисунка. Массой стержня пренебречь. Определить период малых колебаний эллиптического маятника. 48.36 При наезде тележки A на упругий упор B начинаются колебания подвешенного на стержне груза D. Составить дифференциальные уравнения движения материальной системы, если m1-масса тележки, m2-масса груза, l-длина стержня, c-коэффициент жесткости пружины упора B. Массой колес и всеми силами сопротивления пренебречь. Начало отсчета оси x взять в левом конце недеформированной пружины. Определить период малых колебаний груза при отсутствии упора B. Массой стержня пренебречь. 48.38 Решить задачу 48.37, считая, что призма A массы m3 движется по гладкой горизонтальной плоскости, а ее положение определяется координатой x. 48.39 Материальная точка A массы m1 движется в вертикальной плоскости по внутренней гладкой поверхности неподвижного цилиндра радиуса l. Материальная точка B массы m2, присоединенная к точке A посредством стержня AB длины l, может колебаться вокруг оси A, перпендикулярной плоскости рисунка. Положения точек A и B определены с помощью углов α и φ, отсчитываемых от вертикали. Составить дифференциальные уравнения движения системы. Написать дифференциальные уравнения малых колебаний системы. Массой стержня AB пренебречь. Указание. Пренебречь членами, содержащими множители φ'2 и α'2, а также считать sin(φ-α)≈φ-α, cos(φ-α)≈1, sin α≈α, sin φ≈φ.
online-tusa.com | SHOP