На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по теоретической механике с решениями
При условиях задач
45.5
и
45.6
, задавшись коэффициентом перегрузки k=αv
e
/g, определить высоту подъема H ракеты в зависимости от H
max
.
Для просмотра изображения в полном размере нажмите на него
Решение задачи 45.7
(Мещерский И.В.)
<< Предыдущее
Следующее >>
45.5 Масса ракеты, описанной в задаче 45.2, изменяется до t=t0 по закону m=m0e-αt. Пренебрегая силой сопротивления, найти движение ракеты и, считая, что к моменту времени t0 весь заряд практически сгорел, определить максимальную высоту подъема ракеты. В начальный момент ракета имела скорость, равную нулю, и находилась на земле.
45.6 При условиях предыдущей задачи определить значение α, отвечающее максимальной возможной высоте подъема ракеты Hmax, и вычислить Hmax (величину μ=αt0=ln(m0/m1) необходимо считать постоянной; m1-масса ракеты в момент t0).
45.8 Ракета стартует с Луны вертикально к ее поверхности. Эффективная скорость истечения ve=2000 м/с. Число Циолковского z=5. Определить, какое должно быть время сгорания топлива, чтобы ракета достигла скорости v=3000 м/с (принять, что ускорение силы тяжести вблизи Луны постоянно и равно 1,62 м/с2).
45.9 Ракета движется в однородном поле силы тяжести вверх с постоянным ускорением w. Пренебрегая сопротивлением атмосферы и считая эффективную скорость ve истечения газов постоянной, определить время T, за которое масса ракеты уменьшится в два раза.
online-tusa.com
|
SHOP