На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач
→
Задачи по геометрии с решениями
Докажите, что угол φ между прямыми, содержащими векторы a и b, определяется из уравнения: |ab|=| a|*| b |*cosφ.
Для просмотра изображения в полном размере нажмите на него
Решение задачи
(Погорелов А.В. 10 класс)
<< Предыдущее
Следующее >>
Даны четыре точки A(0;1;-1), B(1;-1;2), C(3;1;0), D(2;-3;1). Найдите косинус угла φ между векторами AB и CD.
Даны три точки A(0;1;-1), B(1;-1;2), C(3;1;0). Найдите косинус угла C треугольника ABC.
Из вершины прямого угла A треугольника ABC восставлен перпендикуляр AD к плоскости треугольника. Найдите косинус угла φ между векторами BC и BD, если угол ABD равен α, а угол АВС равен β.
Наклонная образует угол 45° с плоскостью. Через основание наклонной проведена прямая в плоскости под углом 45° к проекции наклонной. Найдите угол φ между этой прямой и наклонной.
online-tusa.com
|
SHOP