На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  Задачи по геометрии с решениями
В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC. Найдите угол, образованный продолжением сторон AB и CD.

Для просмотра изображения в полном размере нажмите на него
В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC. Найдите угол

Решение задачи 3.21
(ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее Следующее >>
3.19. Прямая имеет с параллелограммом ABCD единственную общую точку B. Вершины A и C удалены от этой прямой на расстояния, равные a и b. На какое расстояние удалена от этой прямой вершина D? 3.20. Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника. Найдите расстояние от вершины прямого угла треугольника до центра квадрата, если катеты треугольника равны a и b. 3.22. Дан параллелограмм со сторонами 1 и 2 и острым углом 60°. На двух его противоположных сторонах как на основаниях построены вне параллелограмма равнобедренные треугольники с углами 120° при вершинах. Найдите расстояние между этими вершинами. 3.23. Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD=8.
online-tusa.com | SHOP