Решение задач → Задачи по геометрии с решениями
В треугольник, две из трёх сторон которого равны 9 и 15, вписан параллелограмм так, что одна из его сторон, равная 6, лежит на третьей стороне треугольника, а диагонали параллелограмма параллельны двум данным сторонам треугольника. Найдите другую сторону параллелограмма и третью сторону треугольника.
Для просмотра изображения в полном размере нажмите на него |
Решение задачи 3.8 (ЕГЭ 2012. Математика. Решение задачи С4)
<< Предыдущее
|
Следующее >>
|
3.6. В четырёхугольнике ABCD известны углы: ∠ DAB=90°, ∠ DBC=90°. Кроме того, DB=a, DC=b. Найдите расстояние между центрами двух окружностей, одна из которых проходит через точки D, A, B, а другая-через точки B,C,D.
|
3.7. На сторонах AB и CD прямоугольника ABCD взяты точки K и M так, что AKCM-ромб. Диагональ AC образует со стороной AB угол 30°. Найдите сторону ромба, если наибольшая сторона прямоугольника ABCD равна 3.
|
3.9. Стороны параллелограмма равны a и b (a ≠ b). Найдите диагонали четырёхугольника, образованного пересечениями биссектрис углов параллелограмма.
|
3.10. Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, взаимно перпендикулярны и равны 2 и 7. Найдите площадь четырёхугольника.
|
|