На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Задачи на тему Оптика


5 Пример 1. От двух когерентных источников S1 и S2 (λ=0,8 мкм) лучи попадают на экран. На экране наблюдается интерференционная картина. Когда на пути одного из лучей перпендикулярно ему поместили мыльную пленку (n=1,33), интерференционная картина изменилась на противоположную. При какой наименьшей толщине dmin пленки это возможно?

5 Пример 2. На стеклянный клин с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны λ=0,6 мкм. Число m возникающих при этом интерференционных полос, приходящихся на отрезок клина длиной l, равно 10. Определить угол α клина.

5 Пример 3. На дифракционную решетку в направлении нормали к ее поверхности падает монохроматический свет. Период решетки d=2 мкм. Определить наибольший порядок дифракционного максимума, который дает эта решетка в случае красного (λ1=0,7 мкм) и в случае фиолетового (λ2=0,41 мкм) света.

5 Пример 4. Пучок естественного света падает на полированную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от пластины лучок света образует угол φ=97° с падающим пучком (рис. 61). Определить показатель преломления n1 жидкости, если отраженный свет максимально поляризован.

5 Пример 5. Два николя N1 и N2 расположены так, что угол между их плоскостями пропускания составляет α=60°. Определить, во сколько раз уменьшится интенсивность I0 естественного света: 1) при прохождении через один николь N1; 2) при прохождении через оба николя. Коэффициент поглощения света в николе k=0,05. Потери на отражение света не учитывать.

5 Пример 6. Плоскополяризованный монохроматический пучок света падает на поляроид и полностью им гасятся. Когда на пути пучка поместили кварцевую пластину, интенсивность I пучка света после поляроида стала равна половине интенсивности пучка, падающего на поляроид. Определить минимальную толщину кварцевой пластины. Поглощением и отражением света поляроидом пренебречь, постоянную вращения α кварца принять равной 48,9 град/мм.

5 Пример 7. Определить импульс p и кинетическую энергию T электрона, движущегося со скоростью v=0,9c, где c-скорость света в вакууме.

5 Пример 8. Определить релятивистский импульс электрона, обладающего кинетической энергией T=5 МэВ.

5 Пример 9. Длина волны, на которую приходится максимум энергии в спектре излучения черного тела, λ0=0,58 мкм. Определить энергетическую светимость (излучательность) Re поверхности тела.

5 Пример 10. Определить максимальную скорость vmax фотоэлектронов, вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны λ1=0,155 мкм; 2) γ-излучением с длиной волны λ2=1 пм.

5 Пример 11. В результате эффекта Комптона фотон при соударении с электроном был рассеянна угол φ=90°. Энергия рассеянного фотона e2=0,4 МэВ. Определить энергию фотона e1 до рассеяния.

5 Пример 12. Пучок монохроматического света с длиной волны λ=663 нм падает нормально на зеркальную плоскую поверхность. Поток излучения Фе=0,6 Вт. Определить: 1) силу давления F, испытываемую этой поверхностью; 2) число фотонов ежесекундно падающих на поверхность.

1. На пути пучка света поставлена стеклянная пластина толщиной d=1 мм так, что угол падения луча i1=30°. На сколько изменится оптическая длина пути светового пучка?

2. На мыльную пленку с показателем преломления n=1,33 падает по нормали монохроматический свет с длиной волны λ=0,6 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова наименьшая возможная толщина dmin пленки?

3. Радиус второго темного кольца Ньютона в отраженном свете r2=0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны λ=0,64 мкм.

4. На пластину с щелью, ширина которой a=0,05 мм, падает нормально монохроматический свет с длиной волны λ=0,7 мкм Определить угол φ отклонения лучей, соответствующий первому дифракционному максимуму.

5. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол φ1=30°. На какой угол φ2 отклоняет она спектр четвертого порядка?

6. Угол преломления луча в жидкости i2=35°. Определить показатель преломления n жидкости, если известно, что отраженный пучок света максимально поляризован.

7. На сколько процентов уменьшается интенсивность света после прохождения через призму Николя, если потери света составляют 10%?

8. При какой скорости v релятивистская масса частицы в k=3 раза больше массы покоя этой частицы?

9. Определить скорость v электрона, имеющего кинетическую энергию T=1,53 МэВ.

10. Электрон движется со скоростью v=0,6 c, где c-скорость света в вакууме. Определить релятивистский импульс p электрона.

11. Вычислить энергию, излучаемую за время t=1 мин с площади S=1 см2 абсолютно черного тела, температура которого T=1000 К.

12. Длина волны, на которую приходится максимум энергии излучения абсолютно черного тела, λm=0,6 мкм. Определить температуру T тела.

13. Определить максимальную спектральную плотность (rλ,T)max энергетической светимости (излучательности), рассчитанную на 1 нм в спектре излучения абсолютно черного тела. Температура тела T=1 К.

14. Определить энергию e, массу m и импульс p фотона с длиной волны λ=1,24 нм.

15. На пластину падает монохроматический свет (λ=0,42 мкм). Фототок прекращается при задерживающей разности потенциалов U=0,95 B. Определить работу A выхода электронов с поверхности пластины.

16. На цинковую пластину падает пучок ультрафиолетового излучения (λ=0,2 мкм). Определить максимальную кинетическую энергию Tmax и максимальную скорость vmax фотоэлектронов.

17. Определить максимальную скорость vmax фотоэлектрона, вырванного с поверхности металла γ-квантом с энергией e=1,53 МэВ.

18. Определить угол φ рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны при рассеянии Δλ=3,63 пм.

19. Фотон с энергией e1, равной энергии покоя электрона m0c2, рассеялся на свободном электроне на угол φ=120°. Определить энергию e2 рассеянного фотона и кинетическую энергию T электрона отдачи (в единицах m0c2).

20. Поток энергии, излучаемой электрической лампой, Фе=600 Вт. На расстоянии r=1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d=2 см. Определить силу F светового давления на зеркальце. Лампу рассматривать как точечный изотропный излучатель.

21. Параллельный пучок монохроматического света с длиной волны λ=0,663 мкм падает на зачерненную поверхность и производит на нее давление p=0,3 мкПа. Определить концентрацию n фотонов в световом пучке.

501. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R=0,5 м.

502. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны λ=500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n=1,4.

503. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l=1 см укладывается N=10 темных интерференционных полос. Длина волны λ=0,7 мкм.

504. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ=500 нм. Найти радиус R линзы, если радиус четвертого, темного кольца Ньютона в отраженном свете r4=2 мм.

505. На тонкую глицериновую пленку толщиной d=1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн λ лучей видимого участка спектра (0,4 ≤ λ ≤ 0,8 мкм), которые будут ослаблены в результате интерференции.

506. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны λ=640 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?

507. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ=500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b=0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин n=1,6.

508. Плосковыпуклая стеклянная линза с f=1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5=1,1 мм. Определить длину световой волны λ.

509. Между двумя плоскопараллельными пластинами на расстоянии L=10 см от границы их соприкосновения находится проволока диаметром d=0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (λ=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.

510. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (λ=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.

511. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1=589,0 нм и λ2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d=5 мкм?

512. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n=4,6 раза больше длины световой волны. Найти общее число M дифракционных максимумов, которые теоретически можно наблюдать в данном случае.

513. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ=780 нм) спектра третьего порядка?

514. На дифракционную решетку, содержащую n=600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L=1,2 м. Границы видимого спектра: λкр=780 нм, λф=400 нм.

515. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом θ=65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения.

516. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ=600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ=20°. Определить ширину a щели.

517. На дифракционную решетку, содержащую n=100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Δφ=16°. Определить длину волны λ света, падающего на решетку.

518. На дифракционную решетку падает нормально монохроматический свет (λ=410 нм). Угол Δφ между направлениями на максимумы первого и второго поряд­ков равен 2°21\'. Определить число n штрихов на 1 мм дифракционной решетки.

519. Постоянная дифракционной решетки в n=4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами.

520. Расстояние между штрихами дифракционной решетки d=4 мкм. На решетку падает нормально свет с длиной волны λ=0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?

521. Пластинку кварца толщиной d=2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ=53°. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным?

522. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.

523. Кварцевую пластинку поместили между скрещенными николями. При какой наименьшей толщине dmin кварцевой пластины поле зрения между николями будет максимально просветлено. Постоянная вращения α кварца равна 27 град/мм.

524. При прохождении света через трубку длиной l1=20 см, содержащую раствор сахара концентрацией C1=10%, плоскость поляризации света повернулась на угол φ1=13,3°. В другом растворе сахара, налитом в трубку длиной l2=15 см, плоскость поляризации повернулась на угол φ2=5,2°. Определить концентрацию C2 второго раствора.

525. Пучок света последовательно проходит через два николя, плоскости пропускания которых образуют между собой угол φ=40°. Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз пучок света, выходящий из второго николя, ослаблен по сравнению с пучком, падающим на первый николь.

526. Угол падения ε луча на поверхность стекла равен 60°. При этом отраженный пучок света оказался максимально поляризованным. Определить угол ε2\' преломления луча.

527. Угол α между плоскостями пропускания поляроидов равен 50°. Естественный свет, проходя через такую систему, ослабляется в n=8 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах.

528. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле ε падения отраженный пучок света максимально поляризован?

529. Пучок света переходит из жидкости в стекло. Угол падения ε пучка равен 60°, угол преломления ε2\'=50°. При каком угле падения εв пучок света, отраженный от границы раздела этих сред, будет максимально поляризован?

530. Пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. При каком угле падения εв свет, отраженный от границы стекло-вода, будет максимально поляризован?

531. Частица движется со скоростью v=c/3, где c-скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

532. Протон с кинетической энергией T=3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс α-частицы.

533. При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n=3 раза больше массы покоя?

534. Определить отношение релятивистского импульса p-электрона с кинетической энергией T=1,53 МэВ к комптоновскому импульсу m0c электрона.

535. Скорость электрона v=0,8c (где с-скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах (МэВ), определить в тех же единицах кинетическую энергию T электрона.

536. Протон имеет импульс p=469 МэВ/с. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое?

537. Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией T=1,53 МэВ, больше массы покоя m0?

538. Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?

539. Релятивистский электрон имел импульс p1=m0c. Определить конечный импульс этого электрона (в единицах m0c), если его энергия увеличилась в n=2 раза.

540. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в n=2 раза.

541. Вычислить истинную температуру T вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Tрад=2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна аi=0,35.

542. Черное тело имеет температуру T1=500 К. Какова будет температура T2 тела, если в результате нагревания поток излучения увеличится в n=5 раз?

543. Температура абсолютно черного тела T=2 кК. Определить длину волны λm, на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (излучательности) (rλ,T)max для этой длины волны.

544. Определить температуру T и энергетическую светимость (излучательность) Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны λm=600 нм.

545. Из смотрового окошечка печи излучается поток Фe=4 кДж/мин. Определить температуру T печи, если площадь окошечка S=8 см2.

546. Поток излучения абсолютно черного тела Фe=10 кВт. Максимум энергии излучения приходится на длину волны λm=0,8 мкм. Определить площадь S излучающей поверхности.

547. Как и во сколько раз изменится поток излучения абсолютно черного тела, если максимум энергии излучения переместится с красной границы видимого спектра (λm1=780 нм) на фиолетовую (λm2=390 нм)?

548. Определить поглощательную способность aT серого тела, для которого температура, измеренная радиационным пирометром, Tрад=1,4 кК, тогда как истинная температура T тела равна 3,2 кК.

549. Муфельная печь, потребляющая мощность P=1 кВт, имеет отверстие площадью S=100 см2. Определить долю η мощности, рассеиваемой стенками печи, если температура ее внутренней поверхности равна 1 кК.

550. Средняя энергетическая светимость R поверхности Земли равна 0,54 Дж/(см2*мин). Какова должна быть температура T поверхности Земли, если условно считать, что она излучает как серое тело с коэффициентом черноты aT=0,25?

551. Красная граница фотоэффекта для цинка λ0=310 нм. Определить максимальную кинетическую энергию Tmax фотоэлектронов в электрон-вольтах (эВ), если на цинк падает свет с длиной волны λ=200 нм.

552. На поверхность калия падает свет с длиной волны λ=150 нм. Определить максимальную кинетическую энергию Tmax фотоэлектронов.

553. Фотон с энергией ε=10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс p, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластины.

554. На фотоэлемент с катодом из лития падает свет с длиной волны λ=200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin, которую нужно приложить к фотоэлементу, чтобы прекратить фототок.

555. Какова должна быть длина волны γ-излучения, падающего на платиновую пластину, чтобы максимальная скорость фотоэлектронов была vmax=3 Мм/с?

556. На металлическую пластину направлен пучок ультрафиолетового излучения (λ=0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов Umin=0,96 B. Определить работу выхода A электронов из металла.

557. На поверхность металла падает монохроматический свет с длиной волны λ=0,1 мкм. Красная граница фотоэффекта λ0=0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?

558. На металл падает рентгеновское излучение с длиной волны λ=1 нм. Пренебрегая работой выхода, определить максимальную скорость vmax фотоэлектронов.

559. На металлическую пластину направлен монохроматический пучок света с частотой ν=7,3*1014 Гц. Красная граница λ0 фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость vmax фотоэлектронов.

560. На цинковую пластину направлен монохроматический пучок света. Фототок прекращается при задерживающей разности потенциалов U=1,5 B. Определить длину волны λ света, падающего на пластину.

561. Фотон при эффекте Комптона на свободном электроне был рассеян на угол ϑ=π/2. Определить импульс p (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была ε1=1,02 МэВ.

562. Рентгеновское излучение (λ=1 нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны λmax рентгеновского излучения в рассеянном пучке.

563. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол ϑ=π/2? Энергия фотона до рассеяния ε1=0,51 МэВ.

564. Определить максимальное изменение длины волны (Δλ)max при комптоновском рассеянии света на свободных электронах и свободных протонах.

565. Фотон с длиной волны λ1=15 пм рассеялся на свободном электроне. Длина волны рассеянного фотона λ2=16 пм. Определить угол ϑ рассеяния.

566. Фотон с энергией ε1=0,51 МэВ был рассеян при эффекте Комптона на свободном электроне на угол ϑ=180°. Определить кинетическую энергию T электрона отдачи.

567. В результате эффекта Комптона фотон с энергией ε1=1,02 МэВ рассеян на свободных электронах на угол ϑ=150°. Определить энергию ε2 рассеянного фотона.

568. Определить угол ϑ, на который был рассеян квант с энергией ε1=1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи T=0,51 МэВ.

569. Фотон с энергией ε1=0,51 МэВ при рассеянии на свободном электроне потерял половину своей энергии. Определить угол рассеяния ϑ.

570. Определить импульс pe электрона отдачи, если фотон с энергией ε1=1,53 МэВ в результате рассеяния на свободном электроне потерял 1/3 своей энергии.

571. Определить энергетическую освещенность (облученность) Ee зеркальной поверхности, если давление p, производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.

572. Давление p света с длиной волны λ=40 нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t=10 с на площадь S=1 мм2 этой поверхности.

573. Определить коэффициент отражения ρ поверхности, если при энергетической освещенности Ee=120 Вт/м2 давление p света на нее оказалось равным 0,5 мкПа.

574. Давление света, производимое на зеркальную поверхность, p=5 мПа. Определить концентрацию n0 фотонов вблизи поверхности, если длина волны света, падающего на поверхность, λ=0,5 мкм.

575. На расстоянии r=5 м от точечного монохроматического (λ=0,5 мкм) изотропного источника расположена площадка (S=8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения P=100 Вт.

576. На зеркальную поверхность под углом α=60° к нормали падает пучок монохроматического света (λ=590 нм). Плотность потока энергии светового пучка φ=1 кВт/м2. Определить давление p, производимое светом на зеркальную поверхность.

577. Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r=10 см от точечного изотропного излучателя. При какой мощности P излучателя давление p на зеркальную поверхность будет равным 1 мПа?

578. Свет с длиной волны λ=600 нм нормально падает на зеркальную поверхность и производит на нее давление p=4 мкПа. Определить число N фотонов, падающих за время t=10 с на площадь S=1 мм2 этой поверхности.

579. На зеркальную поверхность площадью S=6 см2 падает нормально поток излучения Фe=0,8 Вт. Определить давление p и силу давления F света на эту поверхность.

580. Точечный источник монохроматического (λ=1 нм) излучения находится в центре сферической зачерненной колбы радиусом R=10 см. Определить световое давление p, производимое на внутреннюю поверхность колбы, если мощность источника P=1 кВт.

online-tusa.com | SHOP