На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия

Задачи на тему Физические основы классической механики


1 Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x=A +Bt + Ct3, где A=2 м, B==1 м/с, C=-0,5 м/с3. Найти координату x, скорость vx и ускорение ax точки в момент времени t=2 c.

1 Пример 2. Тело вращается вокруг неподвижной оси по закону φ=A + Bt + Ct2, где А=10 рад, В=20 рад/с, С=-2 рад/с2. Найти полное ускорение точки, находящейся на расстоянии r=0,1 м от оси вращении, для момента времени t=4 с

1 Пример 3. Ящик массой m1=20 кг соскальзывает по идеально гладкому лотку длиной l=2 м на неподвижную тележку с песком и застревает в нем. Тележка с песком массой m2=80 кг может свободно (без трения) перемещаться по рельсам в горизонтальном направлении. Определить скорость u тележки с ящиком, если лоток наклонен под углом α=30 к рельсам.

1 Пример 4. На спокойной воде пруда перпендикулярно берегу и носом к нему стоит лодка массой M и длиной L. На корме стоит человек массой m. На какое расстояние s удалится лодка от берега, если человек перейдет с кормы на нос лодки? Силами трения и сопротивления пренебречь.

1 Пример 5. При выстреле из пружинного пистолета вертикально вверх пули массой m=20 г поднялась на высоту h=5 м. Определить жесткость k пружины пистолета, если она была сжата на x=10 см. Массой пружины и силами трения пренебречь.

1 Пример 6. Шар массой m1, движущийся горизонтально с некоторой скоростью v1, столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю ε своей кинетической энергии первый шар передал второму?

1 Пример 7. Через блок в виде сплошного диска, имеющего массу m=80 г (рис. 4), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1=100 г и m2=200 г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

1 Пример 8. Маховик в виде сплошного диска радиусом R=0,2 м и массой m=50 кг раскручен до частоты вращения n1=480 мин-1 и предоставлен сам себе. Под действием сил трения маховик остановился через t=50 c. Найти момент M сил трения.

1 Пример 9. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180кг вращается около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость v относительно пола помещения будет иметь человек, если он перейдет на край платформы?

1 Пример 10. Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости v1, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли (R=6,37*106 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли, пренебречь.

1 Пример 11. Точка совершает гармонические колебания с частотой ν=10 Гц. В момент, принятый за начальный, точка имела максимальное смещение: xmax=1 мм. Написать уравнение колебаний точки и начертить их график.

1 Пример 12. Частица массой m=0,01 кг совершает гармонические колебании с периодом T=2 c. Полная энергия колеблющейся частицы E=0,1 мДж. Определить амплитуду A колебаний и наибольшее значение силы Fmax, действующей на частицу.

1 Пример 13. Складываются два колебания одинакового направления, выраженные уравнениями x1=A1cos2π/T(t +τ1); x2=A2cos2π/T(t +τ2), где A1=3 см, A2=2 см, τ1=1/6 c, τ2=1/3 c, T=2 c. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.

1 Пример 14. Плоская волна распространяется вдоль прямой со скоростью v=20 м/с. Две точки, находящиеся на этой прямой на расстояниях x1=12 м и x2=15 м от источника волн, колеблются с разностью фаз Δφ=0,75π. Найти длину волны λ, написать уравнение волны и найти смещение указанных точек в момент t=1,2 c, если амплитуда колебаний A=0,1 м.

1. Точка движется по окружности радиусом R=4 м. Закон ее движения выражается уравнением s=A + Bt2, где A=8 м. B=-2 м/с2. Определить момент времени t, когда нормальное ускорение an точки равно 9 м/с2. Найти скорость v, тангенциальное at и полное a ускорения точки в тот же момент времени t.

2. Две материальные точки движутся согласно уравнениям x1=A1t + B1t2 + C1t3 и x2=A2t + B2t2 + C2t3, где A1=4 м/с, B1=8 м/с2, C1=-16 м/с3, A2=2 м/с, B2=-4 м/с2, C2=1 м/с3. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.

3. Шар массой m1=10 кг сталкивается с шаром массой m2=4 кг. Скорость первого шара v1=4 м/с, второго v2=12 м/с. Найти общую скорость u шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу. Удар считать прямым, центральным, неупругим.

4. В лодке массой M=240 кг стоит человек массой m=60 кг. Лодка плывет со скоростью v=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью u=4 м/с (относительно лодки). Найти скорость лодки после прыжка человека: 1) вперед по движению лодки; 2) в сторону, противоположную движению лодки.

5. Человек, стоящий в лодке, сделал шесть шагов вдоль нее и остановился. На сколько шагов передвинулась лодка, если масса лодки в два раза больше (меньше) массы человека?

6. Из пружинного пистолета выстрелили пулькой, масса которой m=5 г. Жесткость пружины k=1,25 кН/м. Пружина была сжата на Δℓ=8 см. Определить скорость пульки при вылете ее из пистолета.

7. Шар массой m1=200 г, движущийся со скоростью v1=10 м/с, сталкивается с неподвижным шаром массой m2=800 г. Удар прямой, центральный, абсолютно упругий. Определить скорости шаров после столкновения.

8. Шар, двигавшийся горизонтально, столкнулся с неподвижным шаром и передал ему 64% своей кинетической энергии. Шары абсолютно упругие, удар прямой, центральный. Во сколько раз масса второго шара больше массы первого?

9. Цилиндр, расположенный горизонтально, может вращаться вокруг оси, совпадающей с осью цилиндра. Масса цилиндра m1=12 кг. На цилиндр намотали шнур, к которому привязали гирю массой m2=1 кг. С каким ускорением будет опускаться гиря? Какова сила натяжения шнура во время движения гири?

10. Через блок, выполненный в виде колеса, перекинута нить, к концам которой привязаны грузы массами m1=100 г и m2=300 г. Массу колеса M=200 г считать равномерно распределенной по ободу, массой спиц пренебречь. Определить ускорение, с которым будут двигаться грузы, и силы натяжения нити по обе стороны блока.

11. Двум одинаковым маховикам, находящимся в покое, сообщили одинаковую угловую скорость ω=63 рад/с и предоставили их самим себе. Под действием сил трения первый маховик остановился через одну минуту, а второй сделал до полной остановки N=360 оборотов. У какого маховика тормозящий момент был больше и во сколько раз?

12. Шар скатывается с наклонной плоскости высотой h=90 см. Какую линейную скорость будет иметь центр шара в тот момент, когда шар скатится с наклонной плоскости?

13. На верхней поверхности горизонтального диска, который может вращаться вокруг вертикальной оси, проложены по окружности радиусом r=50 см рельсы игрушечной железной дороги. Масса диска M=10 кг, его радиус R=60 см. На рельсы неподвижного диска был поставлен заводной паровозик массой m=1 кг и выпущен из рук. Он начал двигаться относительно рельсов со скоростью v=0,8 м/с. С какой угловой скоростью будет вращаться диск?

14. Платформа в виде диска вращается по инерции около вертикальной оси с частотой n1=14 мин-1. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота возросла до n2=25 мин-1. Масса человека m=70 кг. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.

15. Искусственный спутник обращается вокруг Земли по круговой орбите на высоте H=3200 км над поверхностью Земли. Определить линейную скорость спутника.

16. Точка совершает гармонические колебания. В некоторый момент времени смещение точки x=5 см, скорость ее v=20 см/с и ускорение a=-80 см/с2. Найти циклическую частоту и период колебаний, фазу колебаний в рассматриваемый момент времени и амплитуду колебаний.

17. Точка совершает гармонические колебания, уравнение которых имеет вид x=A sin ωt, где A=5 см, ω=2 с-1 Найти момент времени (ближайший к началу отсчета), в который потенциальная энергия точки П=10-4 Дж, а возвращающая сила F=+5*10-3 Н. Определить также фазу колебаний в этот момент времени.

18. Два гармонических колебания, направленных по одной прямой, имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний.

19. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями x=A1cos ω1t и y=A2cos ω2(t+τ), где A1=4 см, ω1=πc-1, A2=8 см, ω2=πc-1, τ=1 c. Найти уравнение траектории и начертить ее с соблюденном масштаба.

20. Поперечная волна распространяется вдоль упругого шнура со скоростью v=15 м/с. Период колебаний точек шнура T=1,2 c. Определить разность фаз Δφ колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях x1=20 м и x2=30 м.

101. Тело брошено вертикально вверх с начальной скоростью v0=4 м/с. Когда оно достигло верхней точки полета из того же начального пункта, с той же начальной скоростью v0 вертикально вверх брошено второе тело. На каком расстоянии h от начального пункта встретятся тела? Сопротивление воздуха не учитывать.

102. Материальная точка движется прямолинейно с ускорением a=5 м/с2. Определить, на сколько путь, пройденный точкой в n-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять v0=0.

103. Две автомашины движутся по дорогам, угол между которыми α=60°. Скорость автомашин v1=54 км/ч и v2=72 км/ч. С какой скоростью v удаляются машины одна от другой?

104. Материальная точка движется прямолинейно с начальной скоростью v0=10 м/с и постоянным ускорением a=-5 м/с2. Определить, во сколько раз путь Δs, пройденный материальной точкой, будет превышать модуль ее перемещения Δr спустя t=4c после начала отсчета времени.

105. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью v1=18 км/ч. Далее половину оставшегося времени он ехал со скоростью v2=22 км/ч, после чего до конечного пункта он шел пешком со скоростью v3=5 км/ч. Определить среднюю скорость <v> велосипедиста.

106. Тело брошено под углом α=30° к горизонту со скоростью v0=30 м/с. Каковы будут нормальное an и тангенциальное aτ ускорения тела через время t=1 с после начала движения?

107. Материальная точка движется по окружности с постоянной угловой скоростью ω=π/6 рад/с. Во сколько раз путь Δs, пройденный точкой за время t=4 c, будет больше модуля ее перемещения Δr? Принять, что в момент начала отсчета времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повернут на угол φ0=π/3 рад.

108. Материальная точка движется в плоскости xy согласно уравнениям x=A1+B1t+C1t2 и y=A2+B2t+C2t2, где B1=7 м/с, C1=-2 м/с2, B2=-1 м/с, С2=0,2 м/с2. Найти модули скорости и ускорения точки в момент времени t=5 c.

109. По краю равномерно вращающейся с угловой скоростью ω=1 рад/с платформы идет человек и обходит платформу за время t=9,9 c. Каково наибольшее ускорение a движения человека относительно Земли? Принять радиус платформы R=2 м.

110. Точка движется по окружности радиусом R=30 см с постоянным угловым ускорением ε. Определить тангенциальное ускорение aτ точки, если известно, что за время t=4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение an=2,7 м/с2.

111. При горизонтальном полете со скоростью v=250 м/с снаряд массой m=8 кг разорвался на две части. Большая часть массой m1=6 кг получила скорость u1=400 м/с в направлении полета снаряда. Определить модуль и направление скорости u2 меньшей части снаряда.

112. С тележки, свободно движущейся по горизонтальному пути со скоростью v1=3 м/с, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной u1=4 м/с. Определить горизонтальную составляющую скорости u2x человека при прыжке относительно тележки. Масса тележки m1=210 кг, масса человека m2=70 кг.

113. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом α=30° к линии горизонта. Определить скорость u2 отката платформы, если снаряд вылетает со скоростью u1=480 м/с. Масса платформы с орудием и снарядами m2=18 т, масса снаряда m1=60 кг.

114. Человек массой m1=70 кг, бегущий со скоростью v1=9 км/ч, догоняет тележку массой m2=190 кг, движущуюся со скоростью v2=3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?

115. Конькобежец, стоя на коньках на льду, бросает камень массой m1=2,5 кг под углом α=30° к горизонту со скоростью v=10 м/с. Какова будет начальная скорость v0 движения конькобежца, если масса его m2=60 кг? Перемещением конькобежца во время броска пренебречь.

116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его m1=60 кг, масса доски m2=20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) v=1 м/с? Массой колес и трением пренебречь.

117. Снаряд, летевший со скоростью v=400 м/с, в верхней точке траектории разорвался на два осколка. Меньший осколок, масса которого составляет 40% от массы снаряда, полетел в противоположном направлении со скоростью u1=150 м/с. Определить скорость u2 большего осколка.

118. Две одинаковые лодки массами m=200 кг каждая (вместе с человеком и грузами, находящимися в лодках) движутся параллельными курсами навстречу друг другу с одинаковыми скоростями v=1 м/с. Когда лодки поравнялись, то с первой лодки на вторую и со второй на первую одновременно перебрасывают грузы массами m1=200 кг. Определить скорости u1 и u2 лодок после перебрасывания грузов.

119. На сколько переместится относительно берега лодка длиной L=3,5 м и массой m1=200кг, если стоящий на корме человек массой m2=80 кг переместится на нос лодки? Cчитать лодку расположенной перпендикулярно берегу.

120. Лодка длиной l=3 м и массой m=120 кг стоит на спокойной воде. На носу и корме находятся два рыбака массами m1=60 кг и m2=90 кг. На сколько сдвинется лодка относительно воды, если рыбаки поменяются местами?

121. В деревянный шар массой m1=8 кг, подвешенный на нити длиной l=1,8 м попадает горизонтально летящая пуля массой m2=4 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол α=30°? Размером шара пренебречь. Удар считать прямым, центральным.

122. По небольшому куску мягкого железа, лежащему на наковальне массой m1=300 кг, ударяет молот массой m2=8 кг. Определить КПД η удара, если удар неупругий. Полезной считать энергию, пошедшую на деформацию куска железа.

123. Шар массой m1=1 кг движется со скоростью v1=4 м/с и сталкивается с шаром массой m2=2 кг, движущимся навстречу ему со скоростью v2=3 м/с. Каковы скорости u1 и u2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.

124. Шар массой m1=3 кг движется со скоростью v1=2 м/с и сталкивается с покоящимся шаром массой m2=5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.

125. Определить КПД η неупругого удара бойка массой m1=0,5 т, падающего на сваю массой m2=120 кг. Полезной считать энергию, затраченную на вбивание сваи.

126. Шар массой m1=4 кг движется со скоростью v1=5 м/с и сталкивается с шаром массой m2=6 кг, который движется ему навстречу со скоростью v2=2 м/с. Определить скорости u1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

127. Из ствола автоматического пистолета вылетела пуля массой m1=10 г со скоростью v=300 м/с. Затвор пистолета массой m2=200 г прижимается к стволу пружиной, жесткость которой k=25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.

128. Шар массой m1=5 кг движется со скоростью v1=1 м/с и сталкивается с покоящимся шаром массой m2=2 кг. Определить скорости u1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.

129. Из орудия, не имеющего противооткатного устройства, производилась стрельба в горизонтальном направлении. Когда орудие было неподвижно закреплено, снаряд вылетел со скоростью v1=600 м/с, а когда орудию дали возможность свободно откатываться назад, снаряд вылетел со скоростью v2=580 м/с. С какой скоростью откатилось при этом орудие?

130. Шар массой m1=2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m2 большего шара. Удар считать абсолютно упругим, прямым, центральным.

131. Определить работу растяжения двух соединенных последовательно пружин жесткостями k1=400 Н/м и k2=250 Н/м, если первая пружина при этом растянулась на Δl=2 см.

132. Из шахты глубиной h=600 м поднимают клеть массой m1=3,0 т на канате, каждый метр которого имеет массу m=1,5 кг. Какая работа A совершается при поднятии клети на поверхность Земли? Каков коэффициент полезного действия (КПД) η подъемного устройства?

133. Пружина жесткостью k=500 Н/м сжата силой F=100 Н. Определить работу A внешней силы, дополнительно сжимающей пружину еще на Δl=2 см.

134. Две пружины жесткостью k1=0,5 кН/м и k2=1 кН/м скреплены параллельно. Определить потенциальную энергию П данной системы при абсолютной деформации Δl=4 см.

135. Какую нужно совершить работу A, чтобы пружину жесткостью k=800 Н/м, сжатую на x=6 см, дополнительно сжать на Δx=8 см?

136. Если на верхний конец вертикально расположенной спиральной пружины положить груз, то пружина сожмется на Δl=3 мм. На сколько сожмет пружину тот же груз, упавший на конец пружины с высоты h=8 см?

137. Из пружинного пистолета с пружиной жесткостью k=150 Н/м был произведен выстрел пулей массой m=8 г. Определить скорость v пули при вылете ее из пистолета, если пружина была сжата на Δx=4 см.

138. Налетев на пружинный буфер, вагон массой m=16 т, двигавшийся со скоростью v=0,6 м/с, остановился, сжав пружину на Δl=8 см. Найти общую жесткость k пружин буфера.

139. Цепь длиной l=2 м лежит на столе, одним концом свисая со стола. Если длина свешивающейся части превышает 1/3 l, то цепь соскальзывает со стола. Определить скорость v цепи в момент ее отрыва от стола.

140. Какая работа A должна быть совершена при поднятии с земли материалов для постройки цилиндрической дымоходной трубы высотой h=40 м, наружным диаметром D=3,0 м и внутренним диаметром d=2,0 м? Плотность материала ρ принять равной 2,8*103 кг/м3.

141. Шарик массой m=60 г, привязанный к концу нити длиной l1=1,2 м, вращается с частотой n1=2 с-1, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси до расстояния l2=0,6 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу A совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.

142. По касательной к шкиву маховика в виде диска диаметром D=75 см и массой m=40 кг приложена сила F=1 кН. Определить угловое ускорение ε и частоту вращения n маховика через время t=10 с после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.

143. На обод маховика диаметром D=60 см намотан шнур, к концу которого привязан груз массой m=2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t=3 с приобрел угловую скорость ω=9 рад/с.

144. Нить с привязанными к ее концам грузами массами m1=50 г и m2=60 г перекинута через блок диаметром D=4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение ε=1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь.

145. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению φ=At + Bt3, где A=2 рад/с, B=0,2 рад/с3. Определить вращающий момент M, действующий на стержень через время t=2 с после начала вращения, если момент инерции стержня J=0,048 кг*м2.

146. По горизонтальной плоскости катится диск со скоростью v=8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь s=18 м.

147. Определить момент силы M, который необходимо приложить к блоку, вращающемуся с частотой n=12 с-1, чтобы он остановился в течение времени Δt=8 c. Диаметр блока D=30 см. Массу блока m=6 кг считать равномерно распределенной по ободу.

148. Блок, имеющий форму диска массой m=0,4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами m1=0,3 кг и m2=0,7 кг. Определить силы натяжения T1 и T2 нити по обе стороны блока.

149. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой-вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением a=5,6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь.

150. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m1=0,2 кг и m2=0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m=0,4 кг, а его ось движется вертикально вверх с ускорением a=2 м/с2? Силами трения и проскальзывания нити по блоку пренебречь.

151. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m=5 кг каждая. Расстояние от каждой гири до оси скамьи l=70 см. Скамья вращается с частотой n1=1 с-1. Как изменится частота вращения скамьи и какую работу A произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до l2=20 см? Момент инерции человека и скамьи (вместе) относительно оси J=2,5 кг*м2.

152. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью ω1=4 рад/с. С какой угловой скоростью ω2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J=5 кг*м2. Длина стержня l=1,8 м, масса m=6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.

153. Платформа в виде диска диаметром D=3 м и массой m1=180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью ω1 будет вращаться платформа, если по ее краю пойдет человек массой m2=70 кг со скоростью v=1,8 м/с относительно платформы?

154. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы m1=280 кг, масса человека m2=80 кг.

155. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью ω1=25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью ω2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол α=90°? Момент инерции человека и скамьи J равен 2,5 кг*м2, момент инерции колеса J0=0,5 кг*м2.

156. Однородный стержень длиной l=1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m=7 г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонится на угол α=60°. Принять скорость пули v=360 м/с.

157. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1=8 мин-1, стоит человек массой m1=70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2=10 мин-1. Определить массу m2 платформы. Момент инерции человека рассчитывать как для материальной точки.

158. На краю неподвижной скамьи Жуковского диаметром D=0,8 м и массой m1=6 кг стоит человек массой m2=60 кг. С какой угловой скоростью ω начнет вращаться скамья, если человек поймает летящий на него мяч массой m=0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r=0,4 м от оси скамьи. Скорость мяча v=5 м/с.

159. Горизонтальная платформа массой m1=150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n=8 мин-1. Человек массой m2=70 кг стоит при этом на краю платформы. С какой угловой скоростью ω начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека-материальной точкой.

160. Однородный стержень длиной l=1,0 м и массой M=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3 l, абсолютно упруго ударяет пуля массой m=5 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол α=60°. Определить скорость пули.

161. Определить напряженность G гравитационного поля на высоте h=1000 км над поверхностью Земли. Считать известными ускорение g свободного падения у поверхности Земли и ее радиус R.

162. Какая работа A будет совершена силами гравитационного поля при падении на Землю тела массой m=2 кг: 1) с высоты h=1000 км; 2) из бесконечности?

163. Из бесконечности на поверхность Земли падает метеорит массой m=30 кг. Определить работу A, которая при этом будет совершена силами гравитационного поля Земли. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.

164. С поверхности Земли вертикально вверх пущена ракета со скоростью v=5 км/с. На какую высоту она поднимется?

165. По круговой орбите вокруг Земли обращается спутник с периодом T=90 мин. Определить высоту спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.

166. На каком расстоянии от центра Земли находится точка, в которой напряженность суммарного гравитационного поля Земли и Луны равна нулю? Принять, что масса Земли в 81 раз больше массы Луны и что расстояние от центра Земли до центра Луны равно 60 радиусам Земли.

167. Спутник обращается вокруг Земли по круговой орбите на высоте h=520 км. Определить период обращения спутника. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.

168. Определить линейную и угловую скорости спутника Земли, обращающегося по круговой орбите на высоте h=1000 км. Ускорение свободного падения g у поверхности Земли и ее радиус R считать известными.

169. Какова масса Земли, если известно, что Луна в течение года совершает 13 обращений вокруг Земли и расстояние от Земли до Луны равно 3,84*108 м?

170. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус Rз Земли в 3,90 раз больше радиуса Rл Луны и вес тела на Луне в 6 раз меньше веса тела на Земле.

171. На стержне длиной l=30 см укреплены два одинаковых грузика: один-в середине стержня, другой-на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период T простых гармонических колебаний данного физического маятника. Массой стержня пренебречь.

172. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых x=A1sin ω1t и y=A2 cos ω2t, где A1=8 см, A2=4 см, ω1=ω2=2 с-1. Написать уравнение траектории и построить ее. Показать направление движения точки.

173. Точка совершает простые гармонические колебания, уравнение которых x=A sin ωt, гдеA=5 см, ω=2 с-1. В момент времени, когда точка обладала потенциальной энергией П=0,1 мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t.

174. Определить частоту ν простых гармонических колебаний диска радиусом R=20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.

175. Определить период T гармонических колебаний диска радиусом R=40 см около горизонтальной оси, проходящей через образующую диска.

176. Определить период T колебаний математического маятника, если его модуль максимального перемещения Δr=18 см и максимальная скорость vmax=16 см/с.

177. Материальная точка совершает простые гармонические колебания так, что в начальный момент времени смещение x0=4 см, а скорость v0=10 см/с. Определить амплитуду A и начальную фазу φ0 колебаний, если их период T=2 c.

178. Складываются два колебания одинакового направления и одинакового периода: x1=A1 sin ω1t и x2=A2 sin ω2(t+τ), где A1=A2=3 см, ω1=ω2=π с-1, τ=0,5 c. Определить амплитуду A и начальную фазу φ0 результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t=0.

179. На гладком горизонтальном столе лежит шар массой M=200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью k=500 Н/м. В шар попадает пуля массой m=10 г, летящая со скоростью v=300 м/с, и застревает в нем. Пренебрегая перемещением шара во время удара и сопротивлением воздуха, определить амплитуду A и период T колебаний шара.

180. Шарик массой m=60 г колеблется с периодом T=2 c. В начальный момент времени смещение шарика x0=4,0 см и он обладает энергией E=0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы с течением времени.

online-tusa.com | SHOP