На главную страницу
Решебники
Ответы на кроссворды
Поздравления, послания
Товары
Меню
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Школьникам и студентам
Попросить помощи
Заказ работ
Репетитор онлайн
Задачи на тему Геометрическая оптика
28.1 Два плоских прямоугольных зеркала образуют двугранный угол φ=179°. На расстоянии l=10 см от линии соприкосновения зеркал и на одинаковом расстоянии от каждого зеркала находится точечный источник света. Определить расстояние d между мнимыми изображениями источника в зеркалах.
28.2. На сферическое зеркало падает луч света. Найти построением ход луча после отражения в двух случаях: а) от вогнутого зеркала (рис. 28.4, а); б) от выпуклого зеркала (рис. 28.4, б). На рисунке: P-полюс зеркала; O-оптический центр.
28.3. Вогнутое сферическое зеркало дает на экране изображение предмета, увеличенное в Г=4 раза. Расстояние а от предмета до зеркала равно 25 см. Определить радиус R кривизны зеркала.
28.4 Фокусное расстояние f вогнутого зеркала равно 15 см. Зеркало дает действительное изображение предмета, уменьшенное в три раза. Определить расстояние a от предмета до зеркала.
28.5 На рис. 28.5, a, б указаны положения главной оптической оси MN сферического зеркала, светящейся точки S и ее изображения S\'. Найти построением положения оптического центра O зеркала, его полюса P и главного фокуса F. Определить, вогнутым или выпуклым является данное зеркало. Будет ли изображение действительным или мнимым?
28.6. Вогнутое зеркало дает на экране изображение Солнца в виде кружка диаметром d=28 мм. Диаметр Солнца на небе в угловой мере β=32. Определить радиус R кривизны зеркала.
28.7 Радиус R кривизны выпуклого зеркала равен 50 см. Предмет высотой h=15 см находится на расстоянии a, равном 1 м, от зеркала. Определить расстояние b от зеркала до изображения и его высоту H.
28.8. На рис. 28.6 a, б указаны положения главной оптической оси MN сферического зеркала и ход луча 1. Построить ход луча 2 после отражения его от зеркала.
28.9. На столе лежит лист бумаги. Луч света, падающий на бумагу под углом α=30°, дает на ней светлое пятно. Насколько сместится это пятно, если на бумагу положить плоскопараллельную стеклянную пластину толщиной d=5 см?
28.10 Луч падает под углом ε=60° на стеклянную пластинку толщиной d=30 мм. Определить боковое смещение Δx луча после выхода из пластинки.
28.11 Пучок параллельных лучей падает на толстую стеклянную пластину под углом ε=60°, и преломляясь переходит в стекло. Ширина a пучка в воздухе равна 10 см. Определить ширину b пучка в стекле.
28.12 Луч света переходит из среды с показателем преломления n1 в среду с показателем преломления n2. Показать, что если угол между отраженным и преломленным лучами равен π/2, то выполняется условие tg ε1=n2/n1 (ε1-угол падения).
28.13 Луч света падает на грань призмы с показателем преломления n под малым углом. Показать, что если преломляющий угол θ призмы мал, то угол отклонения σ лучей не зависит от угла падения и равен θ(n-1).
28.14 На стеклянную призму с преломляющим углом θ=60° падает луч света. Определить показатель преломления n стекла, если при симметричном ходе луча в призме угол отклонения σ=40°.
28.15 Преломляющий угол θ стеклянной призмы равен 30°. Луч света падает на грань призмы перпендикулярно ее поверхности и выходит в воздух из другой грани, отклоняясь на угол σ=20° от первоначального направления. Определить показатель преломления n стекла.
28.16. Луч света падает на грань стеклянной призмы перпендикулярно ее поверхности и выходит из противоположной грани, отклонившись на угол α=25° от первоначального направления. Определить преломляющий угол θ призмы.
28.17 На грань стеклянной призмы с преломляющим углом θ=60° падает луч света под углом ε1=45°. Найти угол преломления ε2\' луча при выходе из призмы и угол отклонения σ луча от первоначального направления.
28.18. Преломляющий угол θ призмы равен 60°. Угол наименьшего отклонения луча от первоначального направления σ=30. Определить показатель преломления n стекла, из которого изготовлена призма.
28.19. Преломляющий угол θ призмы, имеющей форму острого клина, равен 2°. Определить угол наименьшего отклонения σmin луча при прохождении через призму, если показатель преломления n стекла призмы равен 1,6.
28.20. На тонкую линзу падает луч света. Найти построением ход луча после преломления его линзой а) собирающей (рис. 28.7, а); б) рассеивающей (рис. 28,7 б). На рисунке: O-оптический центр линзы; F-главный фокус.
28.21 На рис. 28.8, a, б, указаны положения главной оптической оси MN линзы и ход луча 1. Построить*ход луча 2 после преломления его линзой.*Считать, что среды по обе стороны линзы одинаковы.
28.22. Найти построением положение светящейся точки, если известен ход лучей после преломления их в линзах: а) собирающей (рис. 28.9, а); б) рассеивающей (рис. 28.9, б). На рисунке: O-оптический центр линзы; F-ее главный фокус.
28.23. На рис. 28.10, a, б указаны положения главной оптической оси MN тонкой линзы, светящейся точки S и се изображения S\'. Найти построением положения оптического центра O линзы и ее фокусов F. Указать, собирающей или рассеивающей будет данная линза. Будет ли изображение действительным или мнимым?
28.24. Линза, расположенная на оптической скамье между лампочкой и экраном, дает на экране резко увеличенное изображение лампочки. Когда лампочку передвинули Δl=40 см ближе к экрану, на нем появилось резко уменьшенное изображение лампочки. Определить фокусное расстояние f линзы, если расстояние l от лампочки до экрана равно 80 см.
28.25 Каково наименьшее возможное расстояние l между предметом и его действительным изображением, создаваемым собирающей линзой с главным фокусным расстоянием f=12 см?
28.26 Человек движется вдоль главной оптической оси объектива фотоаппарата со скоростью v=5 м/с. С какой скоростью u необходимо перемещать матовое стекло фотоаппарата, чтобы изображение человека на нем все время оставалось резким. Главное фокусное расстояние f объектива равно 20 см. Вычисления выполнить для случая, когда человек находился на расстоянии a=10 м от фотоаппарата.
28.27. Из стекла требуется изготовить плосковыпуклую линзу, оптическая сила Ф которой равна 5 дптр. Определить радиус R кривизны выпуклой поверхности линзы.
28.28. Двояковыпуклая линза имеет одинаковые радиусы кривизны поверхностей. При каком радиусе кривизны R поверхностей линзы главное фокусное расстояние f ее будет равно 20 см?
28.29. Отношение k радиусов кривизны поверхностей линзы равно 2. При каком радиусе кривизны R выпуклой поверхности оптическая сила Ф линзы равна 10 дптр?
28.30. Определить радиус R кривизны выпуклой поверхности линзы, если при отношении k радиусов кривизны поверхностей линзы, равном 3, ее оптическая сила Ф=-8 дптр.
28.31. Из двух часовых стекол с одинаковыми радиусами R кривизны, равными 0,5 м, склеена двуяковогнутая воздушная линза. Какой оптической силой Ф будет обладать такая линза в воде?
28.32 Линза изготовлена из стекла, показатель преломления которого для красных лучей nк=1,50, для фиолетовых nф=1,52. Радиусы кривизны R обеих поверхностей линзы одинаковы и равны 1 м. Определить расстояние Δf между фокусами линзы для красных и фиолетовых лучей.
28.33. Определить главное фокусное расстояние f плосковыпуклой линзы, диаметр d которой равен 10 см. Толщина h в центре линзы равна 1 см, толщину у краев можно принять равной нулю.
28.34. Определить оптическую силу Ф мениска*, если радиусы кривизны R1 и R2 его выпуклой и вогнутой поверхностей равны соответственно 1 м и 40 см.
28.35 Главное фокусное расстояние f собирающей линзы в воздухе равно 10 см. Определить, чему оно равно: 1) в воде; 2) в коричном масле.
28.36. У линзы, находящейся в воздухе, фокусное расстояние f1=5 см, а погруженной в раствор сахара f2=35 см. Определить показатель преломления n раствора.
28.37. Тонкая линза, помещенная в воздухе, обладает оптической силой Ф1=5 дптр, а в некоторой жидкости Ф2=-0,48 дптр. Определить показатель преломления n2 жидкости, если показатель преломления n1 стекла, из которого изготовлена линза, равен 1,52.
28.38. Доказать, что оптическая сила Ф системы двух сложенных вплотную тонких линз равна сумме оптических сил Ф1 и Ф2 каждой из этих линз.
28.39. В вогнутое сферическое зеркало радиусом R=20 см налит тонким слоем глицерин. Определить главное фокусное расстояние f такой системы.
28.40. Плосковыпуклая линза имеет оптическую силу Ф1=4 дптр. Выпуклую поверхность линзы посеребрили. Найти оптическую силу Ф2 такого сферического зеркала.
28.41. Поверх выпуклого сферического зеркала радиусом кривизны R=20 см налили тонкий слой воды. Определить главное фокусное расстояние f такой системы.
28.42. Человек без очков читает книгу, располагая ее перед собой на расстоянии a=12,5 см. Какой оптической силы Ф очки следует ему носить?
28.43. Пределы аккомодации глаза близорукого человека без очков лежат между a1=16 см и а2=80 см. В очках он хорошо видит удаленные предметы. На каком минимальном расстоянии d он может держать книгу при чтении в очках?
28.44. Лупа, представляющая собой двояковыпуклую линзу, изготовлена из стекла с показателем преломления n=1,6. Радиусы кривизны R поверхностей линзы одинаковы и равны 12 см. Определить увеличение Г лупы.
28.45 Лупа дает увеличение Г=2. Вплотную к ней приложили собирательную линзу с оптической силой Ф1=20 дптр. Какое увеличение Г2 будет давать такая составная лупа?
28.46 Оптическая сила Ф объектива телескопа равна 0,5 дптр. Окуляр действует как лупа, дающая увеличение Г1=10. Какое увеличение Г2 дает телескоп?
28.47. При окуляре с фокусным расстоянием f=50 мм телескоп дает угловое увеличение Г1=60. Какое угловое увеличение Г2 даст один объектив, если убрать окуляр и рассматривать действительное изображение, созданное объективом, невооруженным глазом с расстояния наилучшего зрения?
28.48. Фокусное расстояние f1 объектива телескопа равно 1 м. В телескоп рассматривали здание, находящееся на расстоянии a=1 км. В каком направлении и на сколько нужно передвинуть окуляр, чтобы получить резкое изображение в двух случаях: 1) если после здания будут рассматривать Луну; 2) если вместо Луны будут рассматривать близкие предметы, находящиеся на расстоянии a1=100 м?
28.49. Телескоп наведен на Солнце. Фокусное расстояние f1 объектива телескопа равно 3 м. Окуляр с фокусным расстоянием f2=50 мм проецирует действительное изображение Солнца, созданное объективом, на экран, расположенный на расстоянии b=60 см от окуляра. Плоскость экрана перпендикулярна оптической оси телескопа. Определить линейный диаметр d изображения Солнца на экране, если диаметр Солнца на небе виден невооруженным глазом под углом α=32\'.
28.50. Фокусное расстояние f1 объектива микроскопа равно 8 мм, окуляра f2=4 см. Предмет находится на Δа=0,5 мм дальше от объектива, чем главный фокус. Определить увеличение Г микроскопа.
28.51. Фокусное расстояние f1 объектива микроскопа равно 1 см, окуляра f2=2 см. Расстояние от объектива до окуляра L=23 см. Какое увеличение Г дает микроскоп? На каком расстоянии a от объектива находится предмет?
28.52. Расстояние σ между фокусами объектива и окуляра внутри микроскопа равно 16 см. Фокусное расстояние f1 объектива равно 1 мм. С каким фокусным расстоянием f2 следует взять окуляр, чтобы получить увеличение Г=500?
28 пример 1. На стеклянную призму с преломляющим углом θ=50° падает под углом ε=30° луч света. Определить угол отклонения σ луча призмой, если показатель преломления n стекла равен 1,56
28 пример 2. Оптическая система представляет собой тонкую плосковыпуклую стеклянную линзу, выпуклая поверхность которой посеребрена. Определить главное фокусное расстояние f такой системы, если радиус кривизны R сферической поверхности линзы равен 60 см.
online-tusa.com
|
SHOP