Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC=(100-4,9t2) м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью ω=π/2 рад/с. Определить в момент времени t=0 скорость точки A, лежащей на ободе диска. Положение точки A на диске определяется углом φ=ωt, отсчитываемым от вертикали против хода часовой стрелки.

Для просмотра изображения в полном размере нажмите на него
При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC= 100-4,9t^2 м. При этом
Решение задачи 16.3
(Мещерский И.В.)


<< Предыдущее Следующее >>
16.1 Направив ось перпендикулярно скорости любой из точек плоской фигуры, показать, что проекции на эту ось скоростей всех лежащих на ней точек равны нулю. 16.2 Колесо катится по наклонной плоскости, образующей угол 30° с горизонтом. Центр O колеса движется по закону xO=10t2 см, где x-ось, направленная параллельно наклонной плоскости. К центру O колеса подвешен стержень OA=36 см, качающийся вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, по закону φ=(π/3)sin(πt/6) рад. Найти скорость конца A стержня AO в момент времени t=1 c. 16.4 Сохранив условие предыдущей задачи, определить скорость точки A в момент времени t=1 c. 16.5 Два одинаковых диска радиуса r каждый соединены цилиндрическим шарниром A. Диск I вращается вокруг неподвижной горизонтальной оси O по закону φ=φ(t). Диск II вращается вокруг горизонтальной оси A согласно уравнению ψ=ψ(t). Оси O и A перпендикулярны плоскости рисунка. Углы φ и ψ отсчитываются от вертикали против хода часовой стрелки. Найти скорость центра C диска II.