На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по физике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Число записей в разделе: 6529

42.2 Определить для бетона толщину слоя половинного ослабления x1/2 узкого пучка γ-излучения с энергией фотонов ε=0,6 МэВ.

42.3 На какую глубину нужно погрузить в воду источник узкого пучка γ-излучения (энергия ε гамма-фотонов равна 1,6 МэВ), чтобы интенсивность I пучка, выходящего из воды, была уменьшена в k=1000 раз?

42.4 Интенсивность I узкого пучка γ-излучения после прохождения через слой свинца толщиной x=4 см уменьшилась в k=8 раз. Определить энергию ε гамма-фотонов и толщину x1/2 слоя половинного ослабления.

42.5 Через свинец проходит узкий пучок γ-излучения. При каком значении энергии ε гамма-фотонов толщина x1/2 слоя половинного ослабления будет максимальной? Определить максимальную толщину xmax слоя половинного ослабления для свинца.

42.6 Узкий пучок γ-излучения (энергия ε гамма-фотонов равна 2,4 МэВ) проходит через бетонную плиту толщиной x1=1 м. Какой толщины x2 плита из чугуна дает такое же ослабление данного пучка γ-излучения?

42.7 Чугунная плита уменьшает интенсивность I узкого пучка γ-излучения (энергия ε гамма-фотонов равна 2,8 МэВ) в k=10 раз. Во сколько раз уменьшит интенсивность этого пучка свинцовая плита такой же толщины?

42.8. Какая доля ω всех молекул воздуха при нормальных условиях ионизируется рентгеновским излучением при экспозиционной дозе X=258 мкКл/кг?

42.9. Воздух при нормальных условиях облучается γ-излучением. Определить энергию W, поглощаемую воздухом массой m=5 г при экспозиционной дозе излучения X=258 мк Кл/кг.

42.10. Под действием космических лучей в воздухе объемом V=1 см^3 на уровне моря образуется в среднем N=120 пар ионов за промежуток времени Δt=1 мин. Определить экспозиционную дозу X излучения, действию которого подвергается человек за время t=1 сут.

42.11. Эффективная вместимость V ионизационной камеры карманного дозиметра равна 1 см^3, электроемкость С=2 пФ. Камера содержит воздух при нормальных условиях. Дозиметр был заряжен до потенциала φ1=150 B. Под действием излучения потенциал понизился до φ2=110 B. Определить экспозиционную дозу X излучения.

42.12. Мощность X экспозиционной дозы, создаваемая удаленным источником γ-излучения с энергией фотонов e=2 МэВ, равна 0,86 мкА/кг. Определить толщину x свинцового экрана, снижающего мощность экспозиционной дозы до уровня предельно допустимой X=0,86 нА/кг (см. рис. 42.1).

42.13. На расстоянии l=10 см от точечного источника γ-излучения мощность экспозиционной дозы X=0,86 мкА/кг. На каком наименьшем расстоянии lmin от источника экспозиционная доза излучения X за рабочий день продолжительностью t=6 ч не превысит предельно допустимую 5,16 мкКл/кг? Поглощением γ-излучения в воздухе пренебречь.

42.14. Мощность экспозиционной дозы X гамма-излучения на расстоянии r1=40 см от точечного источника равна 4,30 мкА/кг. Определить время t, в течение которого можно находиться на расстоянии r2=6 м от источника, если предельно допустимую экспозиционную дозу X принять равной 5,16 мкКл/кг. Поглощением γ-излучения в воздухе пренебречь.

41 пример 1. Определить начальную активность A0 радиоактивного магния ^27Mg массой m=0,2 мкг, а также активность A по истечении времени t=1 ч. Предполагается, что все атомы изотопа радиоактивны.

41 пример 2. При определении периода полураспада T1/2 короткоживущего радиоактивного изотопа использован счетчик импульсов. За время Δt=1 мин в начале наблюдения (t=0) было насчитано Δn1=250 импульсов, а по истечении времени t=1 ч-Δn2=92 импульса. Определить постоянную радиоактивного распада λ и период полураспада T1/2 изотопа.

41.1 Какова вероятность W того, что данный атом в изотопе радиоактивного йода ^131I распадется в течение ближайшей секунды?

41.2 Определить постоянные распада λ изотопов радия ^21988Ra и 22688Ra.

41.3 Постоянная распада λ рубидия ^89Rb равна 0,00077 с-1. Определить его период полураспада T1/2.

41.4 Какая часть начального количества атомов распадется за один год в радиоактивном изотопе тория ^228Th?

41.5 Какая часть начального количества атомов радиоактивного актиния ^225Ac останется через 5 сут? через 15 сут?

41.6 За один год начальное количество радиоактивного изотопа уменьшилось в три раза. Во сколько раз оно уменьшится за два года?

41.7 За какое время t распадается 1/4 начального количества ядер радиоактивного изотопа, если период его полураспада T1/2=24 ч?

41.8 За время t=8 сут распалось k=3/4 начального количества ядер радиоактивного изотопа. Определить период полураспада T1/2.

41.9 При распаде радиоактивного полония 210Po массой m=40 г в течение времени t=10 ч образовался гелий 4He, который при нормальных условиях занял объем V=8,9 см^3. Определить период полураспада T1/2 полония.

41.10 Период полураспада T1/2 радиоактивного нуклида равен 1 ч. Определить среднюю продолжительность τ жизни этого нуклида.

online-tusa.com | SHOP