На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по физике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

Число записей в разделе: 6529

10.33. Преобразовать формулу распределения молекул по энергиям в формулу, выражающую распределение молекул по относительным энергиям ω=^en/<en>, где en-кинетическая энергия; -средняя кинетическая энергия поступательного движения молекул.

10.34. Определить долю ω молекул идеального газа, энергии которых отличаются от средней энергии поступательного движения молекул при той же температуре не более чем на 1 %.

10.35. Вывести формулу, определяющую долю ω молекул, энергия е которых много меньше kT. Функцию распределения молекул по энергиям считать известной.

10.36 Определить долю ω молекул, энергия которых заключена в пределах от ε1=0 до ε2=0,01kT.

10.37. Число молекул, энергия которых заключена в пределах от нуля до некоторого значения е, составляет 0,1 % от общего числа молекул. Определить величину е в долях кТ.

10.38 Считая функцию распределения молекул по энергиям известной, вывести формулу, определяющую долю ω молекул, энергия ε которых много больше энергии теплового движения молекул.

10.39. Число молекул, энергия которых выше некоторого значения e1 составляет 0,1 от общего числа молекул. Определить величину e1 в долях kT, считая, что e1>>kT. Указание. Получающееся трансцендентное уравнение решить графически.

10.40. Используя функцию распределения молекул по энергиям, определить наиболее вероятное значение энергии ев.

10.41. Преобразовать функцию f(e)de распределения молекул по кинетическим энергиям в функцию f(θ)dθ распределения молекул по относительным кинетическим энергиям (где θ=е/ев; ев-наиболее вероятное значение кинетической энергии молекул).

10.42. Найти относительное число ω молекул идеального газа, кинетические энергии которых отличаются от наиболее вероятного значения ев энергии не более чем на 1 %.

10.43 Определить относительное число w молекул идеального газа, кинетические энергии которых заключены в пределах от нуля до значения, равного 0,01 εв (εв-наиболее вероятное значение кинетической энергии молекул).

10.44. Найти выражение для кинетической энергии молекул идеального газа, импульсы которых имеют наиболее вероятное значение рв.

10.45. Во сколько раз изменится значение максимума функции f(е) распределения молекул идеального газа по энергиям, если температура Т газа увеличится в два раза? Решение пояснить графиком.

10.46. Определить, во сколько раз средняя кинетическая энергия поступательного движения молекул идеального газа отличается от наиболее вероятного значения еп кинетической энергии поступательного движения при той же температуре.

10.47. Найти среднюю длину свободного пробега молекул водорода при давлении p=0,1 Па и температуре T=100 К.

10.48. При каком давлении р средняя длина свободного пробега молекул азота равна 1 м, если температура Т газа равна 300 К?

10.49 Баллон вместимостью V=10 л содержит водород массой m=1 г. Определить среднюю длину свободного пробега молекул.

10.50. Можно ли считать вакуум с давлением р=100 мкПа высоким, если он создан в колбе диаметром d=20 см, содержащей азот, при температуре Т=280 К?

10.51. Определить плотность ρ разреженного водорода, если средняя длина свободного пробега молекул равна 1 см.

10.52. Найти среднее число столкновений, испытываемых я течение t=1 с молекулой кислорода при нормальных условиях.

10.53 Найти число N всех соударений, которые происходят в течение t=1 с между всеми молекулами водорода, занимающего при нормальных условиях объем V=1 мм^3.

10.54 В газоразрядной трубке находится неон при температуре T=300 К и давлении p=1 Па. Найти число N атомов неона, ударяющихся за время Δt=1 с о катод, имеющий форму диска площадью S=1 см^2.

10.55 Найти среднюю продолжительность свободного пробега молекул кислорода при температуре T=250 К и давлении p=100 Па.

10.56 Найти зависимость средней длины свободного пробега молекул идеального газа от давления p при следующих процессах: 1) изохорном; 2) изотермическом. Изобразить эти зависимости на графиках.

10.57. Найти зависимость средней длины свободного пробега молекул идеального газа от температуры Т при следующих процессах: 1) изохорном; 2) изобарном. Изобразить эти зависимости на графиках.

online-tusa.com | SHOP