Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
Выразить декартовы координаты точки через тороидальные координаты r=CM, ψ и φ и определить коэффициенты Ляме (Ламе).

Для просмотра изображения в полном размере нажмите на него
Выразить декартовы координаты точки через тороидальные координаты r=CM, ψ и φ и определить коэффициенты Ляме Ламе .
Решение задачи 12.35
(Мещерский И.В.)


<< Предыдущее Следующее >>
12.33 Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют вид (см. задачу 10.21) r=R, φ=kt/2, θ=kt/2. Найти проекции и модуль ускорения точки в сферических координатах. 12.34 Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ-долгота, φ-широта места плавания), модуль ускорения и радиус кривизны локсодромии. 12.36 Движение точки задано в тороидальной системе координат r, ψ и φ. Найти проекции скорости и ускорения точки на оси этой системы отсчета. 12.37 Точка движется по винтовой линии, намотанной на тор, по закону r=R=const, ψ=ωt, φ=kt. Определить проекции скорости и ускорения точки в тороидальной системе координат (ω=const, k=const).