Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r=a, φ=kt, z=νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии.

Для просмотра изображения в полном размере нажмите на него
Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r=a, φ=kt, z=νt. Найти проекции ускорения
Решение задачи 12.32
(Мещерский И.В.)


<< Предыдущее Следующее >>
12.30 В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0. 12.31 Конец A стержня AB перемещается по прямолинейной направляющей CD с постоянной скоростью vA. Стержень AB все время проходит через качающуюся муфту O, отстоящую от направляющей CD на расстоянии a. Приняв точку O за полюс, найти в полярных координатах r, φ скорость и ускорение точки M, находящейся на линейке на расстоянии b от ползуна A. 12.33 Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют вид (см. задачу 10.21) r=R, φ=kt/2, θ=kt/2. Найти проекции и модуль ускорения точки в сферических координатах. 12.34 Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ-долгота, φ-широта места плавания), модуль ускорения и радиус кривизны локсодромии.