Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0.

Для просмотра изображения в полном размере нажмите на него
В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0.
Решение задачи 12.30
(Мещерский И.В.)


<< Предыдущее Следующее >>
12.28 Построить траекторию движения точки, годограф скорости и определить радиус кривизны траектории в начальный момент, если точка движется согласно уравнениям x=4t, y=t3 (t-в секундах, x и y-в сантиметрах). 12.29 Кривошип O1C длиной a/2 вращается с постоянной угловой скоростью ω вокруг оси O1. В точке С с кривошипом шарнирно связана линейка AB, проходящая все время через качающуюся муфту O, находящуюся на расстоянии a/2 от оси вращения O1. Приняв точку O за полюс, найти в полярных координатах уравнения движения точки M линейки, отстоящей от шарнира C на расстоянии a, ее траекторию, скорость и ускорение (в начальный момент угол φ=∠COO1=0). 12.31 Конец A стержня AB перемещается по прямолинейной направляющей CD с постоянной скоростью vA. Стержень AB все время проходит через качающуюся муфту O, отстоящую от направляющей CD на расстоянии a. Приняв точку O за полюс, найти в полярных координатах r, φ скорость и ускорение точки M, находящейся на линейке на расстоянии b от ползуна A. 12.32 Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r=a, φ=kt, z=νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии.