Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
Движение точки, описывающей фигуру Лиссажу, задается уравнениями x=3 sin t, y=2 cos 2t (t-в секундах). Найти уравнение траектории, вычертить ее и указать направление движения точки в различные моменты времени. Указать также ближайший после начала движения момент времени t1, когда траектория пересечет ось Ox.

Для просмотра изображения в полном размере нажмите на него
Движение точки, описывающей фигуру Лиссажу, задается уравнениями x=3 sin t, y=2 cos 2t t-в секундах . Найти уравнение траектории, вычертить ее
Решение задачи 10.6
(Мещерский И.В.)


<< Предыдущее Следующее >>
10.4 По заданным уравнениям движения точки найти уравнение ее траектории, а также указать закон движения точки по траектории, отсчитывая расстояние от начального положения точки. 1) x=3t2, y=4t2. 2) x=3 sin t, y=3 cos t. 3) x=a cos2 t, y=a sin2 t. 4) x=5 cos 5t2, y=5 sin 5t2. 10.5 Мостовой кран движется вдоль мастерской согласно уравнению x=t; по крану катится в поперечном направлении тележка согласно уравнению y=1,5t (x и y-в метрах, t-в секундах). Цепь укорачивается со скоростью v=0,5 м/с. Определить траекторию центра тяжести груза; в начальном положении центр тяжести груза находился в горизонтальной плоскости Oxy; ось Oz направлена вертикально вверх. 10.7 При соответствующем выборе осей координат уравнения движения электрона в постоянном магнитном поле определяются равенствами x=a sin kt, y=a cos kt, z=vt, где a, k и v-некоторые постоянные, зависящие от напряженности магнитного поля, массы, заряда и скорости электрона. Определить траекторию электрона и закон движения его по траектории. 10.8 Гармонические колебания точки определяются законом x=a sin(kt+ε), где a > 0-амплитуда колебаний, k > 0-круговая частота колебаний и ε (-π ≤ ε ≤ π)-начальная фаза. Определить центр колебаний a0, амплитуду, круговую частоту, период T, частоту колебаний f в герцах и начальную фазу по следующим уравнениям движения (x-в сантиметрах, f-в секундах): 1) x=-7 cos 12t. 2) x=4 sin (πt/20)-3 cos (πt/20). 3) x=2-4 sin 140t. 4) x=6 sin2 18t. 5) x=1-4 cos2 (πt/60).