Поиск задач
Решение задач  →  Задачи по теоретической механике с решениями
Цилиндр веса Q лежит на двух опорах A и B, расположенных симметрично относительно вертикали, проходящей через центр цилиндра. Коэффициент трения между цилиндром и опорами равен f. При какой величине тангенциальной силы T цилиндр начнет вращаться? При каком угле θ это устройство будет самотормозящимся?

Для просмотра изображения в полном размере нажмите на него
Цилиндр веса Q лежит на двух опорах A и B, расположенных симметрично относительно вертикали, проходящей через центр цилиндра. Коэффициент трения
Решение задачи 5.14
(Мещерский И.В.)


<< Предыдущее Следующее >>
5.12 Клин C вставлен между двумя телами A и B, которые лежат на шероховатой горизонтальной плоскости. Одна сторона клина вертикальна, другая-образует с вертикалью угол α=arctg 1/3. Вес тела A равен 400 Н, а вес тела B 300 Н; коэффициенты трения между поверхностями указаны на рисунке. Найти величину силы Q, под действием которой одно из тел сдвинется, а также значение силы трения F, действующей при этом со стороны горизонтальной плоскости на оставшееся неподвижным тело. 5.13 Цилиндр A лежит в направляющих B, поперечное сечение которых-симметричный клин с углом раствора θ. Коэффициент трения между цилиндром A и направляющей B равен f. Вес цилиндра равен Q. При какой величине силы P цилиндр начнет двигаться горизонтально? Каков должен быть угол θ, чтобы движение началось при значении силы P, равной весу цилиндра Q? 5.15 Пренебрегая трением между ползуном A и направляющей, а также трением во всех шарнирах и подшипниках кривошипного механизма, определить, какова должна быть сила P, необходимая для поддерживания груза Q при указанном на рисунке положении механизма. Каковы минимальное и максимальное значения P, обеспечивающие неподвижность груза Q, если коэффициент трения между ползуном A и направляющей равен f? 5.16 Груз B веса P удерживается с помощью троса BAD в равновесии при подъеме по шероховатой поверхности, имеющей форму четверти кругового цилиндра. Коэффициент трения между поверхностью и грузом f=tg φ, где φ-угол трения. Определить натяжение троса как функцию угла α. Найти условие, которому должен удовлетворять угол α, чтобы натяжение троса принимало экстремальное значение. Размерами груза и блока A пренебречь.