Поиск задач
Решение задач  →  Задачи по геометрии с решениями
Наклонная образует угол 45° с плоскостью. Через основание наклонной проведена прямая в плоскости под углом 45° к проекции наклонной. Найдите угол φ между этой прямой и наклонной.

Для просмотра изображения в полном размере нажмите на него
Наклонная образует угол 45° с плоскостью. Через основание наклонной проведена прямая в плоскости под углом 45° к проекции наклонной. Найдите
Решение задачи
(Погорелов А.В. 10 класс)


<< Предыдущее Следующее >>
Докажите, что угол φ между прямыми, содержащими векторы a и b, определяется из уравнения: |ab|=| a|*| b |*cosφ. Из вершины прямого угла A треугольника ABC восставлен перпендикуляр AD к плоскости треугольника. Найдите косинус угла φ между векторами BC и BD, если угол ABD равен α, а угол АВС равен β. Из точки вне плоскости проведены перпендикуляр и две равные наклонные, образующие углы α с перпендикуляром. найдите угол φ между проекциями наклонных, если угол между наклонными β. Найдите координаты вершины D параллелограмма ABCD, если координаты трех других вершин известны: 1) A(2;3;2), B(0;2;4), C(4;1;0); 2) A(1;-1;0), B(0;1;-1), C(-1;0;1); 3) A(4;2;-1), B(1;-3;2), C(-4;2;1).