Поиск задач
Решение задач  →  Задачи по геометрии с решениями
Найдите угол между плоскостями, если точка, взятая на одной из них, отстоит от прямой пересечения плоскостей вдвое дальше, чем от второй плоскости.

Для просмотра изображения в полном размере нажмите на него
Найдите угол между плоскостями, если точка, взятая на одной из них, отстоит от прямой пересечения плоскостей вдвое дальше, чем от второй пло
Решение задачи
(Погорелов А.В. 10 класс)


<< Предыдущее Следующее >>
Докажите, что плоскость, пересекающая параллельные плоскости, пересекает их под равными углами. Две плоскости пересекаются под углом 30°. Точка A, лежащая в одной из этих плоскостей, отстоит от второй плоскости на расстояние a. Найдите расстояние от этой точки до прямой пересечения плоскостей. Два равнобедренных треугольника имеют общее основание, а их плоскости образуют угол 60°. Общее основание равно 16 м, боковая сторона одного треугольника 17 м, а боковые стороны другого перпендикулярны. Найдите расстояние между вершинами треугольников. Равнобедренные треугольники ABC и ABD с общим основанием AB лежат в различных плоскостях, угол между которыми равен α. Найдите cosα, если: 1) AB=24 см, AC=13 см, AD=37 см, CD=35 см; 2) AB=32 см, AC=65 см, AD=20 см, CD=63 см При решении ссылаются на предыдущую задачу №2064