Поиск задач
Решение задач  →  Задачи по геометрии с решениями
Найдите геометрическое место оснований наклонных данной длины, проведенных из данной точки к плоскости.

Для просмотра изображения в полном размере нажмите на него
Найдите геометрическое место оснований наклонных данной длины, проведенных из данной точки к плоскости.
Решение задачи
(Погорелов А.В. 10 класс)


<< Предыдущее Следующее >>
В равнобедренном треугольнике основание и высота равны 4 м. Данная точка находится на расстоянии 6 м от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние. Расстояния от точки A до вершин квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если сторона квадрата равна b. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найдите проекции наклонных. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если: 1) одна на 26 см больше другой, а проекции наклонных равны 12 см и 40 см; 2) наклонные относятся как 1 : 2, а проекции наклонных равны 1 см и 7 см.