На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по теоретической механике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Число записей в разделе: 3236

5.29 Лестница AB опирается на негладкую стену и негладкий пол, составляя с последним угол 60°. На лестнице помещается груз P. Пренебрегая весом лестницы, определить графически наибольшее расстояние BP, при котором лестница остается в покое. Угол трения для стены и пола равен 15°.

5.30 Тяжелый однородный стержень AB лежит на двух опорах C и D, расстояние между которыми CD=a, AC=b. Коэффициент трения стержня об опоры равен f. Угол наклона стержня к горизонту равен α. Какому условию должна удовлетворять длина стержня 2l для того, чтобы стержень находился в равновесии, если толщиной его можно пренебречь?

5.31 Однородный брус опирается в точке A на негладкий горизонтальный пол и удерживается в точке B веревкой. Коэффициент трения бруса о пол равен f. Угол α, образуемый брусом с полом, равен 45°. При каком угле φ наклона веревки к горизонту брус начнет скользить?

5.32 Однородный стержень своими концами A и B может скользить по негладкой окружности радиуса a. Расстояние OC стержня до центра O окружности, расположенной в вертикальной плоскости, равно b. Коэффициент трения между стержнем и окружностью равен f. Определить для положений равновесия стержня угол φ, составляемый прямой OC с вертикальным диаметром окружности.

5.33 Прокатный стан состоит из двух валов диаметром d=50 см, вращающихся в противоположные стороны, указанные стрелками на рисунке; расстояние между валами a=0,5 см. Какой толщины b листы можно прокатывать на этом стане, если коэффициент трения для раскаленного железа и чугунных валов f=0,1? Для работы стана необходимо, чтобы лист захватывался вращающимися валами, т.е. чтобы равнодействующая приложенных к листу нормальных реакций и сил трения в точках A и B была направлена по горизонтали вправо.

5.34 Блок радиуса R снабжен двумя шипами радиуса r, симметрично расположенными относительно его средней плоскости. Шипы опираются на две цилиндрические поверхности AB с горизонтальными образующими. На блок намотан трос, к которому подвешены грузы P и P1, причем P > P1. Определить наименьшую величину груза P1, при которой блок будет находиться в равновесии, предполагая, что коэффициент трения шипов о цилиндрические поверхности AB равен f, а вес блока с шипами Q. Указанное на рисунке положение системы не может быть положением равновесия; последнее требуется предварительно найти.

5.35 Для опускания грузов употребляется ворот с тормозом, изображенный на рисунке. С барабаном, на который намотана цепь, скреплено концентрическое деревянное колесо, которое тормозят, надавливая на конец A рычага AB, соединенного цепью CD с концом D тормозного рычага ED. Диаметр колеса a=50 см; диаметр барабана b=20 см; ED=120 см; FE=60 см; AB=1 м; BC=10 см. Определить силу P, уравновешивающую груз Q=8 кН, подвешенный к подвижному блоку, если коэффициент трения дерева о сталь f=0,4; размерами колодки F пренебрегаем.

5.36 На гранях AB и BC призмы ABC помещены два одинаковых тела G и H веса P, связанные нитью, перекинутой через блок в точке B. Коэффициент трения между телами и гранями призмы равен f. Углы BAC и BCA равны 45°. Определить, пренебрегая трением на блоке, величину угла α наклона грани AC к горизонту, необходимую для того, чтобы груз G начал опускаться.

5.37 Глубина заложения опор железнодорожного моста, перекинутого через реку, рассчитана в том предположении, что вес опоры с приходящимся на нее грузом уравновешивается давлением грунта на дно опоры и боковым трением, причем грунт-мелкозернистый песок, насыщенный водой, принимается за жидкое тело. Вычислить глубину h заложения этих опор, если нагрузка на опору 1500 кН, вес опоры на 1 м ее высоты 80 кН, высота опоры над дном реки 9 м, высота воды над дном 6 м, площадь основания опоры 3,5 м^2, боковая поверхность опоры на 1 м высоты 7 м2, вес 1 м3 песка, насыщенного водой, равен 18 кН, вес 1 м3 воды равен 10 кН и коэффициент трения о песок стального футляра, в котором заключена каменная опора, 0,18. При расчете трения принимаем во внимание, что среднее боковое давление на 1 м2 равно 10(6+0,9h) кН.

5.38 Определить угол α наклона плоскости к горизонту, при котором ролик радиуса r=50 мм равномерно катится по плоскости. Материал трущихся тел-сталь, коэффициент трения качения k=0,05 мм. Ввиду малости угла α можно принять α=tg α.

5.39 Определить силу P, необходимую для равномерного качения цилиндрического катка диаметра 60 см и веса 300 Н по горизонтальной плоскости, если коэффициент трения качения k=0,5 см, а угол, составляемый силой P с горизонтальной плоскостью, равен α=30°.

5.40 На горизонтальной плоскости лежит шар радиуса R и веса Q. Коэффициент трения скольжения шара о плоскость f, коэффициент трения качения k. При каких условиях горизонтальная сила P, приложенная в центре шара, сообщает ему равномерное качение?

5.41 При взаимодействии с ледяным покровом ледокол рассматривается в равновесии под действием веса судна G, силы поддержания воды D, упора винтов R, а также сил, действующих со стороны льда в точке форштевня K: нормального давления N и максимальной силы трения F. Угол наклона форштевня φ=30°, коэффициент трения f=0,2. Известны значения G=6000 кН, R=200 кН, a=20 м, b=2 м, e=1 м. Пренебрегая дифферентом судна, определить вертикальное давление судна на ледяной покров P, силу поддержания D и расстояние ее от центра тяжести судна l.

5.42 Груз Q может скользить по шероховатой вертикальной направляющей AB. К грузу прикреплен трос, несущий груз P. Пренебрегая размером блока D, определить: 1) условие, при котором возможна зона застоя (геометрическое место возможных положений равновесия); 2) условие, при котором верхняя граница зоны застоя находится в положительной части оси y; 3) ординаты границ зоны застоя при Q=5 Н, P=10 Н, f=0,2, OD=10 см; 4) ординаты границ зоны застоя при Q=1,5 Н, P=10 Н, f=0,2, OD=10 см.

6.1 Угловой столб составлен из двух одинаково наклоненных брусьев AB и AC, скрепленных в вершине посредством шарнира. Угол BAC=30°. Столб поддерживает два горизонтальных провода AD и AE, составляющих между собой прямой угол. Натяжение каждого провода равно 1 кН. Определить усилия в брусьях, предполагая, что плоскость BAC делит пополам угол DAE, пренебрегая весом брусьев.

6.2 Горизонтальные провода телеграфной линии подвешены к телеграфному столбу AB с подкосом AC и составляют угол DAE=90°. Натяжения проводов AD и AE соответственно равны 120 Н и 160 Н. В точке A крепление шарнирное. Найти угол α между плоскостями BAC и BAE, при котором столб не испытывает бокового изгиба, и определить усилие S в подкосе, если он поставлен под углом 60° к горизонту. Весом столба и подкоса пренебречь.

6.3 Груз Q=100 Н поддерживается брусом AO, шарнирно закрепленным в точке A и наклоненным под углом 45° к горизонту, и двумя горизонтальными цепями BO и CO одинаковой длины; ∠CBO=∠BCO=45°. Найти усилие S в брусе и натяжения T цепей.

6.4 Найти усилия S1 и S2 в стержнях AB и AC и усилие T в тросе AD, если дано, что ∠CBA=∠BCA=60°, ∠EAD=30°. Вес груза P равен 300 Н. Плоскость ABC горизонтальна. Крепления стержней в точках A, B и C шарнирные.

6.5 Найти усилия в стержне AB и цепях AC и AD, поддерживающих груз Q веса 420 Н, если AB=145 см, AC=80 см, AD=60 см, плоскость прямоугольника CADE горизонтальна, а плоскости V и W вертикальны. Крепление в точке B шарнирное.

6.6 Определить усилия в тросе AB и в стержнях AC и AD, поддерживающих груз Q веса 180 Н, если AB=170 см, AC=AD=100 см, CD=120 см; CK=KD и плоскость ΔCDA горизонтальна. Крепления стержней в точках A, C и D шарнирные.

6.7 Переносный кран, поднимающий груз Q веса 20 кН, устроен так, как указано на рисунке; AB=AE=AF=2 м; угол EAF=90°, плоскость крана ABC делит прямой двугранный угол EABF пополам. Определить силу P1, сжимающую вертикальную стойку AB, а также силы P2, P3 и P4, растягивающие струну BC и тросы BE и BF, пренебрегая весом частей крана.

6.8 Груз Q веса 1 кН подвешен в точке D, как указано на рисунке. Крепления стержней в точках A, B и D шарнирные. Определить реакции опор A, B и C.

6.9 Воздушный шар, удерживаемый двумя тросами, находится под действием ветра. Тросы образуют между собой прямой угол: плоскость, в которой они находятся, составляет с плоскостью горизонта угол 60°. Направление ветра перпендикулярно линии пересечения этих плоскостей и параллельно поверхности земли. Вес шара и заключенного в нем газа 2,5 кН, объем шара 215,4 м3, вес 1 м3 воздуха 13 Н. Определить натяжения T1 и T2 тросов и равнодействующую P сил давления ветра на шар, считая, что линии действия всех сил, приложенных к шару, пересекаются в центре шара.

6.10 На рисунке изображена пространственная ферма, составленная из шести стержней 1, 2, 3, 4, 5, 6. Сила P действует на узел A в плоскости прямоугольника ABCD; при этом ее линия действия составляет с вертикалью CA угол 45°. ΔEAK=ΔFBM. Углы равнобедренных треугольников EAK, FBM и NDB при вершинах A, B и D прямые. Определить усилия в стержнях, если P=1 кН.

6.11 Определить усилия в вертикальной стойке и в ногах крана, изображенного на рисунке, в зависимости от угла α, если дано: AB=BC=AD=AE. Крепления в точках A, B, D и E шарнирные.

online-tusa.com | SHOP