На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по теоретической механике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Число записей в разделе: 3236

49.12 В условиях предыдущей задачи составить канонические уравнения движения волчка.

49.13 Свободная точка единичной массы движется в вертикальной плоскости xy под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби-Гамильтона и найти его полный интеграл (ось y направлена вертикально вверх).

49.14 Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби-Гамильтона, найти первые интегралы уравнений движения точки.

49.15 Физический маятник массы M вращается вокруг неподвижной горизонтальной оси. Момент инерции маятника относительно этой оси равен J, расстояние от центра масс маятника до оси равно l. Составить дифференциальное уравнение Якоби-Гамильтона, найти его полный интеграл и первые интегралы движения маятника (нулевой уровень потенциальной энергии взять на уровне оси маятника).

49.16 Движение волчка, имеющего одну неподвижную точку O, определяется углами Эйлера ψ, θ и φ. Пользуясь результатами решения задачи 49.11, составить уравнение в частных производных Якоби-Гамильтона и найти полный интеграл его.

49.17 Концы струны закреплены в неподвижных точках А и B, расстояние между которыми равно l. Считая, что натяжение Т струны одинаково во всех точках, определить действие по Гамильтону для малых колебаний струны. Предполагается, что колебания происходят в одной вертикальной плоскости xy и что на струну действуют только силы натяжения, линейная плотность струны равна ρ.

49.18 Пользуясь принципом Гамильтона-Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение колебаний струны.

49.19 Абсолютно гибкая однородная и нерастяжимая нить длины l подвешена за один конец в точке O. Определить действие по Гамильтону для малых колебаний нити около вертикали, происходящих под действием силы тяжести. Масса единицы длины нити равна ρ.

49.20 Пользуясь принципом Гамильтона-Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение малых колебаний подвешенной за один конец нити.

49.21. Пользуясь принципом Гамильтона-Остроградского, составить дифференциальное уравнение продольных колебаний тонкого стержня, заделанного на одном конце и с массой m на другом конце и получить граничные условия. Плотность материала стержня ρ, модуль продольной упругости E, площадь поперечного сечения F, длина l.

49.22. Составить дифференциальное уравнение крутильных колебаний стержня, заделанного на одном конце, с диском на другом конце. Плотность материала стержня ρ, модуль сдвига G, поперечное сечение-круг радиуса r, длина стержня l. Момент инерции диска J.

49.23. Пользуясь принципом Гамильтона-Остроградского, составить дифференциальное уравнение поперечных колебаний шарнирно опертой балки, а также получить граничные условия. Плотность материала балки ρ, модуль продольной упругости E, площадь поперечного сечения F, момент инерции поперечного сечения J, длина балки l.

49.24. Пользуясь принципом Гамильтона-Остроградского, получить граничные условия в задаче о поперечных колебаниях консольной балки длины l.

49.25. Пользуясь принципом Гамильтона-Остроградского, составить уравнения малых колебании системы, состоящей из консольной балки длины l и груза массы m, прикрепленного к балке и к основанию пружинами жесткости c. Плотность материала балки ρ, модуль продольной упругости E, площадь поперечного сечения F, момент инерции поперечного сечения J.

53.1 Ось вращения AB прямоугольной пластины наклонена под углом а к вертикали. Определить момент сил М относительно оси AB, который нужно приложить к пластине для ее поворота на угол θ. Вес пластины Р, расстояние от центра масс пластины G до оси AB равно a.

53.2 Шарнирным шестиугольник, состоящий из шести равных однородных стержней веса р каждый, расположен в вертикальной плоскости. Верхняя сторона шестиугольника AB неподвижно закреплена в горизонтальном положении; остальные стороны расположены симметрично по отношению к вертикали, проходящей через середину AB. Определить, какую вертикальную силу Q надо приложить в середине горизонтальной стороны, противоположной AB, для того чтобы система находилась в безразличном равновесии.

53.3 К однородному стержню AB длины 2а и веса Q, подвешенному на двух нитях длины l каждая, приложена пара сил с моментом М. Точки подвеса нитей, расположенные на одной горизонтали, находятся на расстоянии 2b друг от друга. Найти угол θ, определяющий положение равновесия стержня.

53.4 Прямолинейный однородный стержень AB длины 2l упирается нижним концом А в вертикальную стену, составляя с ней угол φ. Стержень опирается также на гвоздь C, параллельный стене. Гвоздь отстоит от стены на расстоянии a. Определить угол φ в положении равновесия стержня.

53.5 На гладкий цилиндр радиуса r опираются два однородных тяжелых стержня, соединенных шарниром A. Длина каждого стержня равна 2a. Определить угол 2ϑ раствора стержней, соответствующий положению равновесия.

53.6. Система состоит из двух однородных стержней длины а и массы m, расположенных в вертикальной плоскости. В точке А стержни соединены шарниром. В точке O неподвижный шарнир. В точке В стержень AB соединен шарниром с телом С массы m которое может перемешаться по вертикали, проходящей через точку O. Середины стеожней OA и AB соединены пружиной жесткости с Длина пружины в ненапряженном состоянии lс< a. Найти положения равновесия и условия их устойчивости. Трением и массой пружины пренебречь.

53.7 Концы однородного тяжелого стержня длины l могут скользить без трения по кривой, заданной уравнением f(x,y)=0 Определить положения равновесия стержня. Ось у направлена по вертикали вверх, ось x-по горизонтали вправо.

53.8 Однородный тяжелый стержень длины l может скользить своими концами без трения по параболе y=ах^2.Определить возможные положения равновесия. (Ось у направлена по вертикали вверх, ось х-по горизонтали вправо.)

53.9 Решить задачу 53.7 в предположении, что кривая является эллипсом, а длина стержня удовлетворяет условию l < 2а. Определить возможные положения равновесия стержня

53.10 По гладкому проволочному кольцу радиуса R расположенному в вертикальной плоскости, может скользить без трения колечко. К этому колечку на нити подвешен груз массы m, другая нить, перекинутая через ничтожно малый блок B, расположенный на конце горизонтального диаметра большого кольца имеет на конце С другой груз Q массы m^2. Определить положения равновесия колечка А и исследовать, какие из них устойчивы какие нет.

53.11 Однородная квадратная пластинка может вращаться в вертикальной плоскости около оси, проходящей через угол O; вес пластинки Р, длина ее стороны a. К углу А пластинки привязана нить длины l, перекинутая через малый блок B, отстоящий на расстоянии а по вертикали от точки O. Па нити висит груз веса Q. Определить положения равновесия системы следовать их устойчивость.

online-tusa.com | SHOP