На главную страницу
Поиск задач
Найти задачу можно, введя ее условие. Если с первого раза не нашли решение на нужное готовое задание, попробуте поиск по другим похожим ключевым фразам из ее условия
Решение задач  →  

Задачи по теоретической механике с решениями

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

Число записей в разделе: 3236

48.8 Бегуны К, К приводятся в движение от вала двигателя при помощи передачи, схема которой показана на рисунке. Масса одного бегуна равна 3 т, средний радиус R=1 м, радиус вращения r=0,5 м. Считаем, что мгновенная ось вращения бегуна проходит через среднюю точку C обода. Отношение радиусов колес конической передачи от двигателя к вертикальному валу равно 2/3. Бегун считаем однородным диском радиуса R и пренебрегаем массой всех движущихся частей по сравнению с массой бегунов. Вычислить, какой постоянный вращающий момент должен быть приложен на валу двигателя, чтобы сообщить вертикальному валу угловую скорость 120 об/мин по истечении 10 с от момента пуска двигателя; силами сопротивления пренебречь.

48.11 Однородный конус катится по шероховатой плоскости, наклоненной под углом α к горизонту. Длина образующей конуса l, угол раствора 2β. Составить уравнение движения конуса.

48.16 Два вала, находящихся в одной плоскости и образующих между собой угол α, соединены шарниром Кардана. Моменты инерции валов равны J1 и J2. Составить уравнение движения первого вала, если на него действует вращающий момент M1, а к другому валу приложен момент сопротивления М2. Трением в подшипниках пренебречь.

48.17 Кривошипный механизм состоит из поршня массы m1 шатуна AB массы m2, кривошипа OB, вала и махового колеса; J2-момент инерции шатуна относительно его центра масс С; J3-момент инерции кривошипа OB, вала и махового колеса относительно оси; Q-площадь поршня, p-давление, действующее на поршень, l-длина шатуна; S-расстояние между точкой А и центром масс шатуна; r-длина кривошипа OB; М-момент сопротивления, действующий на вал. Составить уравнение движения механизма, считая угол поворота шатуна φ малым, т. е. полагая sin φ=φ и cosφ=1; в качестве обобщенной координаты взять угол поворота кривошипа ф. Механизм расположен в горизонтальной плоскости.

48.18 По однородному стержню массы М и длины 2а, концы которого скользят по гладкой, расположенной в горизонтальной плоскости окружности радиуса R, движется с постоянной относительной скоростью и материальная точка массы т. Определить движение стержня. В начальный момент материальная точка находится в центре масс стержня.

48.20 К окружности диска радиуса R шарнирно присоединен рычаг, несущий на своих концах сосредоточенные массы m1 и m2. Расстояния масс от шарнира соответственно равны l1 и l2. Диск вращается около вертикальной оси, перпендикулярной его плоскости, с угловой скоростью ω. Составить уравнение движения рычага и определить его относительное положение равновесия. Массой рычага пренебречь. Ось вращения рычага параллельна оси вращения диска. Решить также задачу в предположении, что диск вращается в вертикальной плоскости (учесть действие силы тяжести).

48.21 Тонкий диск массы М может своей плоскостью скользить без трения по горизонтальной плоскости. По диску, верхняя поверхность которого шероховата, движется материальная точка массы т: Уравнения относительного движения точки в декартовых координатах x и y, связанных с диском и имеющих начало в его центре масс, заданы в виде x=x(t), y=y(t). Момент инерции диска относительно его центра масс равен J. Определить закон изменения угловой скорости диска. В начальном положении диск неподвижен.

48.22 По диску, описанному в предыдущей задаче, вдоль окружности радиуса R движется материальная точка с относительной скоростью v=at. Найти закон движения диска.

48.25 Тело массы m может вращаться вокруг горизонтальной оси O1O2, которая в свою очередь вращается с постоянной угловой скоростью ω вокруг вертикальной оси OC. Центр масс тела G лежит на расстоянии l от точки O3 на прямой, перпендикулярной O1O2. Предполагая, что оси O1O2 и O3G являются главными осями инерции тела в точке O3, составить уравнение движения. Моменты инерции тела относительно главных осей равны A, B, C.

48.32 Решить предыдущую задачу, заменив грузы M1 и М2 катками массы m и радиуса r каждый. Катки считать сплошными однородными круглыми дисками. Коэффициент трения качения катков о наклонные плоскости равен fк, Нити закреплены на осях катков.

48.37 По неподвижной призме A, расположенной под углом α к горизонту, скользит призма В массы m2. К призме B, посредством цилиндрического шарнира O и спиральной пружины с коэффициентом жесткости c, присоединен тонкий однородный стержень OD массы m1 и длины l. Стержень совершает колебания вокруг оси O, перпендикулярной плоскости рисунка. Положения призмы В и стержня OD определены посредством координат s и р. Написать дифференциальные уравнения движения материальной

48.45 Пользуясь результатами, полученными при решении предыдущей задачи, составить дифференциальное уравнение малых колебании цилиндра, если движение началось из состояния покоя и при t=0, ρ=ρ0, φ=φ0

48.46 Определить движение системы, состоящей из двух масс m1 и m2, насаженных на гладкий горизонтальный стержень (ось Ох), массы связаны пружиной жесткости с и могут двигаться поступательно вдоль стержня; расстояние между центрами масс при ненапряженной пружине равно l; начальное состояние системы при t=0 определяется следующими значениями скоростей и координат центров масс: x1=0, x1'=u0, x2=l, x2'=0

48.47 Система, состоящая из двух одинаковых колес радиуса а каждое, могущих независимо вращаться вокруг общей нормальной к ним оси O1O2 длины l, катится по горизонтальном плоскости. Колеса связаны пружиной жесткости c, работающей на кручение (упругий торсион). Масса каждого колеса М; С-момент инерции колеса относительно оси вращения, А-момент инерции колеса относительно диаметра. Составить уравнения движения системы и определить движение, отвечающее начальным условиям φ1=0, φ1'=0, φ2=0, φ2'=ω (φ1, φ2-углы поворота колес). Массой оси пренебречь.

49.1 Трубка AB вращается с постоянной угловой скоростью ω вокруг вертикальной оси CD, составляя с ней угол α. В трубке находится пружина жесткости c, один конец которой укреплен в точке A; ко второму концу пружины прикреплено тело M массы m, скользящее без трения внутри трубки. В недеформированном состоянии длина пружины равна AO=l. Приняв за обобщенную координату расстояние x от тела M до точки O, определить кинетическую энергию T тела M и обобщенный интеграл энергии.

49.2 Найти первые интегралы движения сферического маятника длины l, положение которого определяется углами θ и ψ.

49.3 Гироскопический тахометр установлен на платформе, вращающейся с постоянной угловой скоростью u вокруг оси ζ. Определить первые интегралы движения, если коэффициент жесткости спиральной пружины равен c, моменты инерции гироскопа относительно главных центральных осей x, y, z соответственно равны A, B и C, причем B=A; силы трения на оси z собственного вращения гироскопа уравновешиваются моментом, создаваемым статором электромотора, приводящим во вращение гироскоп; силами трения на оси прецессии y пренебречь.

49.4 Материальная точка M соединена с помощью стержня OM длины l с плоским шарниром O, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью ω. Определить условие устойчивости нижнего вертикального положения маятника, период его малых колебаний при выведении его из этого положения и обобщенный интеграл энергии. Массой стержня пренебречь.

49.5 Уравновешенный гироскоп в кардановом подвесе движется по инерции. Определить кинетическую энергию системы и первые интегралы уравнений движения, если момент инерции внешней рамки относительно неподвижной оси вращения ξ равен Jξ, моменты инерции внутренней рамки относительно главных центральных осей x, y, z равны J'x, J'y, J'z, а соответствующие моменты инерции гироскопа-Jx, Jy и Jz (Jx=Jy).

49.6 Гироскоп установлен в кардановом подвесе. Вокруг осей ξ и у вращения рамок подвеса действуют моменты внешних сил Mξ и Му. Игнорируя циклическую координату φ, найти 1) дифференциальные уравнения движения для координат φ и θ, 2) гироскопические члены. (См. рисунок к задаче 49.5.)

49.7 Составить функцию Гамильтона и канонические уравнения движения для математического маятника массы m и длины l, положение которого определяется углом φ отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.

49.8 Материальная точка массы m подвешена с помощью стержня длины l к плоскому шарниру, горизонтальная ось которого вращается вокруг вертикали с постоянной угловой скоростью ω (см. рисунок к задаче 49.4). Составить функцию Гамильтона и канонические уравнения движения. Массу стержня не учитывать.

49.9 Вертикальное положение оси симметрии волчка, вращающегося относительно неподвижной точки O под действием силы тяжести, определяется углами α и β. Исключив циклическую координату φ(угол собственного вращения), составить для углов α и β функции Рауса и Гамильтона. Масса волчка равна m, расстояние от его центра масс до точки O равно l, момент инерции относительно оси симметрии z равен C, а относительно осей x и у равен A.

49.10 Пользуясь результатами, полученными при решении предыдущей задачи, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.

49.11 Положение оси симметрии z волчка, движущегося относительно неподвижной точки O под действием силы тяжести, определяется углами Эйлера, углом прецессии ψ и углом нутации θ. Составить функцию Гамильтона для углов ψ, θ и φ (угол собственного вращения) и соответствующих импульсов, если m-масса волчка, l-расстояние от его центра масс до точки O, C-момент инерции относительно оси z, A-момент инерции относительно любой оси, лежащей в экваториальной плоскости, проходящей через точку O.

online-tusa.com | SHOP