Поиск задач

Задачи на тему Энергия заряженного проводника. Энергия электрического поля


18 пример 1. Конденсатор электроемкостью C1=3 мкФ был заряжен до разности потенциалов U1=40 B. После отключения от источника тока конденсатор был соединен параллельно с другим незаряженным конденсатором электроемкостью C2=5 мкФ. Определить энергию ΔW, израсходованную на образование искры в момент присоединения второго конденсатора.

18 пример 2. Плоский воздушный конденсатор с площадью S пластины, равной 500 см2, подключен к источнику тока, ЭДС ξ которого равна 300 B. Определить работу A внешних сил по раздвижению пластин от расстояния d1=1 см до d2=3 см в двух случаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенными к нему.

18 пример 3. Плоский конденсатор заряжен до разности потенциалов U=1 кВ. Расстояние d между пластинами равно 1 см. Диэлектрик-стекло. Определить объемную плотность энергии поля конденсатора

18 пример 4. Металлический шар радиусом R=3 см несет заряд Q=20 нКл. Шар окружен слоем парафина толщиной d=2 см. Определить энергию W электрического поля, заключенного в слое диэлектрика

18.1 Конденсатору, электроемкость C которого равна 10 пФ, сообщен заряд Q=1 пКл. Определить энергию W конденсатора

18.2 Расстояние d между пластинами плоского конденсатора равно 2 см, разность потенциалов U=6 кВ. Заряд Q каждой пластины равен 10 нКл. Вычислить энергию W поля конденсатора и силу F взаимного притяжения пластин.

18.3 Какое количество теплоты Q выделится при разряде плоского конденсатора, если разность потенциалов U между пластинами равна 15 кВ, расстояние d=1 мм, диэлектрик-слюда и площадь S каждой пластины равна 300 см2?

18.4 Сила F притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь S каждой пластины равна 200 см2. Найти плотность энергии w поля конденсатора

18.5 Плоский воздушный конденсатор состоит из двух круглых пластин радиусом r=10 см каждая. Расстояние d1 между пластинами равно 1 см. Конденсатор зарядили до разности потенциалов U=1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до d2=3,5 см?

18.6 Плоский воздушный конденсатор электроемкостью С=1,11 нФ заряжен до разности потенциалов U=300 B. После отключения от источника тока расстояние между пластинами конденсатора было увеличено в пять раз. Определить: 1) разность потенциалов U на обкладках конденсатора после их раздвижения; 2) работу A внешних сил по раздвижению пластин.

18.7 Конденсатор электроемкостью C1=666 пФ зарядили до разности потенциалов U=1,5 кВ и отключили от источника тока. Затем к конденсатору присоединили параллельно второй, незаряженный конденсатор электроемкостью С2=444 пФ. Определить энергию, израсходованную на образование искры, проскочившей при соединении конденсаторов

18.8 Конденсаторы электроемкостями C1=1 мкФ, С2=2 мкФ, С3=3 мкФ включены в цепь с напряжением U=1,1 кВ. Определить энергию каждого конденсатора в случаях: 1) последовательного их включения; 2) параллельного включения.

18.9 Электроемкость С плоского конденсатора равна 111 пФ. Диэлектрик-фарфор. Конденсатор зарядили до разности потенциалов U=600 В и отключили от источника напряжения. Какую работу A нужно совершить, чтобы вынуть диэлектрик из конденсатора? Трение пренебрежимо мало.

18.10. Пространство между пластинами плоского конденсатора заполнено диэлектриком (фарфор), объем V которого равен 100 см3. Поверхностная плотность заряда σ на пластинах конденсатора равна 8,85 нКл/м2. Вычислить работу A, которую необходимо совершить для того, чтобы удалить диэлектрик из конденсатора. Трением диэлектрика о пластины конденсатора пренебречь

18.11. Пластину из эбонита толщиной d=2 мм и площадью S=300 см2 поместили в однородное электрическое поле напряженностью H=1 кВ/м, расположив так, что силовые линии перпендикулярны ее плоской поверхности. Найти: 1) плотность σ связанных зарядов на поверхности пластин; 2) энергию W электрического поля, сосредоточенную в пластине

18.12. Пластину предыдущей задачи переместили из поля в область пространства, где внешнее поле отсутствует. Пренебрегая уменьшением поля в диэлектрике с течением времени, определить энергию W электрического поля в пластине

18.13 Найти энергию W уединенной сферы радиусом R=4 см, заряженной до потенциала φ=500 B.

18.14 Вычислить энергию W электростатического поля металлического шара, которому сообщен заряд Q=100 нКл, если диаметр d шара равен 20 см

18.15 Уединенная металлическая сфера электроемкостью C=10 пФ заряжена до потенциала φ=3 кВ. Определить энергию W поля, заключенного в сферическом слое, ограниченном сферой и концентрической с ней сферической поверхностью, радиус которой в три раза больше радиуса сферы.

18.16. Электрическое поле создано заряженной (Q=0,1 мкКл) сферой радиусом R=10 см. Какова энергия W поля, заключенная в объеме, ограниченном сферой и концентрической с ней сферической поверхностью, радиус которой в два раза больше радиуса сферы?

18.17. Уединенный металлический шар радиусом R1=6 см несет заряд Q. Концентрическая этому шару поверхность делит пространство на две части (внутренняя конечная и внешняя бесконечная), так что энергии электрического поля обеих частей одинаковы. Определить радиус R2 этой сферической поверхности

18.18. Сплошной парафиновый шар радиусом R=10 см заряжен равномерно по объему с объемной плотностью ρ=10 нКл/м3. Определить энергию W1 электрического поля, сосредоточенную в самом шаре, и энергию W2 вне его

18.19. Эбонитовый шар равномерно заряжен по объему. Во сколько раз энергия электрического поля вне шара превосходит энергию поля, сосредоточенную в шаре?