Поиск задач

Задачи на тему Приведение системы сил к простейшему виду


7.1 К вершинам куба приложены по направлениям ребер силы, как указано на рисунке. Каким условиям должны удовлетворять модули сил F1, F2, F3, F4, F5 и F6, чтобы они находились в равновесии?

7.2 По трем непересекающимся и непараллельным ребрам прямоугольного параллелепипеда действуют три равные по модулю силы P. Какое соотношение должно существовать между ребрами a, b и c, чтобы эта система приводилась к одной равнодействующей?

7.3 К четырем вершинам A, H, B и D куба приложены четыре равные по модулю силы: P1=P2=P3=P4=P, причем сила P1 направлена по AC, P2-по HF, P3-по BE и P4-по DG. Привести эту систему к простейшему виду.

7.4 К правильному тетраэдру ABCD, ребра которого равны a, приложены силы: F1 по ребру AB, F2 по ребру CD и F3 в точке E-середине ребра BD. Величины сил F1 и F2 какие угодно, а проекции силы F3 на оси x, y и z равны +F25√3/6;-F2/2;-F2√(2/3). Приводится ли эта система сил к одной равнодействующей? Если приводится, то найти координаты x и z точки пересечения линии действия равнодействующей с плоскостью Oxz.

7.5 К вершинам куба, ребра которого имеют длину 5 см, приложены, как указано на рисунке, шесть равных по модулю сил, по 2 Н каждая. Привести эту систему к простейшему виду.

7.6 Систему сил: P1=8 Н, направленную по Oz, и P2=12 Н, направленную параллельно Oy, как указано на рисунке, где OA=1,3 м, привести к каноническому виду, определив величину главного вектора V всех этих сил и величину их главного момента M относительно произвольной точки, взятой на центральной винтовой оси. Найти углы α, β и γ, составляемые центральной винтовой осью с координатными осями, а также координаты x и y точки встречи ее с плоскостью Oxy.

7.7 Три силы P1, P2 и P3 лежат в координатных плоскостях и параллельны осям координат, но могут быть направлены как в ту, так и в другую сторону. Точки их приложения A, B и C находятся на заданных расстояниях a, b и c от начала координат. Какому условию должны удовлетворять величины этих сил, чтобы они приводились к одной равнодействующей? Какому условию должны удовлетворять величины этих сил, чтобы существовала центральная винтовая ось, проходящая через начало координат?

7.8 К правильному тетраэдру ABCD с ребрами, равными a, приложена сила F1 по ребру AB и сила F2 по ребру CD. Найти координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.

7.9 По ребрам куба, равным a, действуют двенадцать равных по модулю сил P, как указано на рисунке. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.

7.10 По ребрам прямоугольного параллелепипеда, соответственно равным 10 м, 4 м и 5 м, действуют шесть сил, указанных на рисунке: P1=4 Н, P2=6 Н, P3=3 Н, P4=2 Н, P5=6 Н, P6=8 Н. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.

7.11 Равнодействующие P=8000 кН и F=5200 кН сил давления воды на плотину приложены в средней вертикальной плоскости перпендикулярно соответствующим граням на расстоянии H=4 м и h=2,4 м от основания. Сила веса G1=12000 кН прямоугольной части плотины приложена в ее центре, а сила веса G2=6000 кН треугольной части-на расстоянии одной трети длины нижнего основания треугольного сечения от вертикальной грани этого сечения. Ширина плотины в основании b=10 м, в верхней части a=5 м; tg α=5/12. Определить равнодействующую распределенных сил реакции грунта, на котором установлена плотина.

7.12 Вес радиомачты с бетонным основанием G=140 кН. К мачте приложены сила натяжения антенны F=20 кН и равнодействующая сил давления ветра P=50 кН; обе силы горизонтальны и расположены во взаимно перпендикулярных плоскостях; H=15 м, h=6 м. Определить результирующую реакцию грунта, в котором уложено основание мачты.